
Trees

Until now, we have dealt with linear data structures such as:
●  arrays
●  linked lists
●  stacks
●  queues

A tree is:
●  a nonlinear data structure where members may have multiple

successors
●  a data structure made up of nodes.

CS300 Data Structures (Fall 2015)

CS300 Data Structures (Fall 2015)

Trees

Tree Terminology
●  root – unique starting node
●  parent – predecessor of a node
●  child – successor of a node
●  leaf – a node with no children
●  siblings – two nodes with the same parent
●  ancestors – let A be an arbitrary node of a tree. If A is
the root node, then A has no ancestors; otherwise, the
parent of A and all ancestors of A's parent are
ancestors of A

●  What kind of definition is ancestor?

CS300 Data Structures (Fall 2015)

Tree Terminology
●  descendants – let B be an arbitrary node of a tree. If B is

a leaf node, then B has no descendants; otherwise, each
child of B and all descendants of each child of B are
descendants of B.

●  subtree – an arbitrary node in the tree and all
descendants of that node

●  level – the root node is level 1 and every other node in the
tree is at level n where n is the number of nodes in the
path from the root node to the node in question

●  depth (or height) – maximum level of any node in the tree

CS300 Data Structures (Fall 2015)

Identify Tree Attributes

For the given tree, identify:
a) root
b) parent of E
c) children of A
d) leaf nodes
e) any two siblings
f) ancestors of B
g) descendants of F
h) level of D
I) depth of the tree

CS300 Data Structures (Fall 2015)

Binary Tree
●  Characteristics of a binary tree:

●  Each parent can have at most two children
●  A binary tree can be empty
●  If a binary tree has two children, the child on the left is the ″left child
″ and the one on the right is the ″right child″

●  Note: The left child is the root of the left subtree and the
right child is the root of the right subtree

CS300 Data Structures (Fall 2015)

Some Binary Tree Operations
●  Before defining the Binary Tree ADT, let's work a few

problems.

●  Write the appropriate data structure definitions for a binary
tree.

●  We can define three traversal methods for a binary tree:
●  inorder: Left, Visit, Right
●  preorder: Visit, Left, Right
●  postorder: Left, Right, Visit

CS300 Data Structures (Fall 2015)

Identify
●  For the following binary tree, identify the inorder, preorder,

and postorder traversals.

CS300 Data Structures (Fall 2015)

Binary Search Tree (BST)
•  Consider	 an	 arbitrary	 node	 in	 a	 tree	 called	 A.	

•  All	 values	 in	 the	 le5	 subtree	 are	 less	 than	 the	 value	
in	 A.	

•  All	 values	 in	 the	 right	 subtree	 are	 greater	 than	 the	
value	 in	 A.	

CS300 Data Structures (Fall 2015)

Create BST
•  Create	 a	 BST	 for	 the	 following	 strings	 (note:	 apr	 <	
jan):	

•  jan,	 feb,	 mar,	 apr,	 may,	 jun,	 jul,	 aug,	 sep,	 oct,	 nov,	
dec	

CS300 Data Structures (Fall 2015)

Traversals
•  If	 visiEng	 a	 node	 means	 prinEng	 the	 contents	 of	 the	
node,	 show	 each	 of	 the	 following	 traversals	 of	 the	
newly	 created	 BST.	

•  	 preorder	
•  	 inorder	
•  	 postorder	

CS300 Data Structures (Fall 2015)

BST Functions
•  	 Write	 an	 algorithm	 for	 bstInsert.	

•  	 What	 is	 the	 worst	 case	 compuEng	 complexity	 of	
your	 algorithm?	 Why?	

•  	 Write	 the	 C	 funcEon	 bstInsert.	

CS300 Data Structures (Fall 2015)

BST Functions
•  Write a C function bstFindLevel that returns the level of a

node in a BST.

•  Write a C function btFindLevel that returns the level of a
node in a binary tree.

CS300 Data Structures (Fall 2015)

