
Complexity Analysis

Software Life Cycle

● Requirements – specifications for a given project that includes what is to be input
and what is to be output.

● Analysis – the problem is broken down into manageable pieces typically using a top-
down approach where the program is continually refined into more manageable
pieces. During this phase there are several alternative solutions that are developed
and compared. We will talk how to compare these pieces shortly.

● Design – this continues the work of the analysis phase and includes data objects the
program needs and the operations performed on the data objects. The data types
during this phase are ADTs and no implementation details exist during this phase.

● Refinement and coding – actual representations for each ADT are developed and
algorithms for each operation are written.

● Verification - program correctness must be developed including extensive testing
using various datasets.



Once You're Done

1.Are the original specifications met by the program?

2.Is the program implemented correctly and work 

correctly?

3.Is there documentation that shows how to use the 

program?

4.Does the program contain well defined modules and 

strive for reusability?

5.How readable is the code?

6.How efficiently and effectively is storage used?

7.Does the program have an acceptable running time?



Complexity

Questions 6. and 7. are best identified by the terms

“Space Complexity” and “Time Complexity.”

For each of the data structures we will discuss in this

course, we will want to know the associated space

complexity and time complexity.

We need some method to talk about complexity issues



Algorithm Efficiency

● Let’s look at the following algorithm for initializing the values in an 
array:

int n = 500;

int i;

int counts[n];

for ( i = 0; i < n; ++i)

{

counts[i] = 0;

}

● What does the time that the algorithm takes depend on? Which 
variable?



Algorithm Efficiency

• In the previous algorithm, we have one loop that processes 

all of the elements in the array.

• Intuitively:

• If n was half of its value, we would expect the algorithm to take half 

the time.

• If n was twice its value, we would expect the algorithm to take twice 

the time.

• That is true and we say that the algorithm efficiency relative 
to n is linear.



Algorithm Efficiency

• Let’s look at another algorithm for initializing the values in a 

different array:
int n = 500;

int i;

int counts[n][n];

for ( i = 0; i < n; i++)

{

for ( j = 0; j < n; j++)

{

counts[i][j] = 0;

}

}

• What does the length of time that the algorithm takes to execute 

depend on?



Algorithm Efficiency

• In the second algorithm, we have a nested loop to process 

the elements in the two dimensional array.

• Intuitively:

• If n is half its value, we would expect the algorithm to take one 

quarter the time.

• If n is twice its value, we would expect the algorithm to take 

quadruple the time.

• That is true and we say that the algorithm efficiency relative 
to n is quadratic.



Big-O

• Algorithms are measured according to a notation called 

"Big-O" notation (e.g. O(N)). 

• How does the execution time change with a change in 

data size?

• Big-O measures the computational complexity of a 

particular algorithm based on the number of steps relative 

to some data size, N

• Number of items



Big-O

• Measures the growth rate of an algorithm as the size of its 

input grows. 

• Huh? 

• “O” is a math function that helps estimate how much longer 

it takes to run n inputs versus n+1 inputs (or n+2, 2n, 3n…).

• “O” doesn’t care what programing language you use!  Only 

cares about the underlying algorithm.



Big-O

• What Doesn’t “O” do?

• Doesn’t tell you that algorithm A is faster than algorithm B for a 

particular input.

• Why not? Only tells you if one grows faster than another in a general 

sense for all inputs.

• Usually concerned with very large data inputs.  

• Called asymptotic algorithm analysis.



Big-O Notation

• We use a shorthand mathematical notation to describe the 

efficiency of an algorithm relative to any parameter n as its 

“Order” or Big-O.

• We can say that the first algorithm is O(n).

• We can say that the second algorithm is O(n2).

• For any algorithm that has a function g(n) of the parameter n 

that describes its length of time to execute, we can say the 

algorithm is O(g(n)).

• We only include the fastest growing term and ignore any 

multiplying by or adding of constants.



What is N? Why?
#define TRUE 1

#define FALSE 0

int isSorted (const int nums[], int howmany)

{

int bSorted;

int i;

bSorted = TRUE;

for (i = 0; i < (howmany - 1); ++i)

{

if (nums[i] > nums[i + 1])

{

bSorted = FALSE;

}

}

return bSorted;

}



What is the Complexity?

If isSorted is called only one time:

1)How many times is the statement bSorted = true; 

executed?

2)How many times is the for statement executed?

3)How many times is the if statement executed?

4)How many times is the statement return bSorted; 

executed?

5)What am I missing?

6)What is the overall time complexity of function 

isSorted? O(__)



Big-O

• Determines the relative speeds of algorithms, but doesn’t 

depend on:

• Hardware used (Mac vs. PC)

• Clock speed of the processor

• The compiler used

• The programming language used



Complexity Scenerios

When looking at computational complexity, we 

typically examine three scenarios:

1) Best Case Performance

2) Average Case Performance

3) Worst Case Performance



Complexity Categories

Typically we find that computational complexities fall into polynomial, 
logarithmic, or exponential time and are named:

1) O(1) – constant

2) O(log
2
N) – logarithmic

3) O(N) – linear

4) O(Nlog
2
N) – Log linear

5) O(N2) – quadratic

6) O(N3) – cubic

7) O(2N) – exponential

8) O(N!) - factorial



Growth Rates

Let's examine how the complexity grows for 

various computing times.

N     log
2
N     Nlog

2
N     N2 N3 2n

2         1          2     4    8     4

4         2          8    16   64    16

8         3         24    64  512   256

16        4         64   256 4096 65536



Growth Rates Graphically



Identify Big-O

Average Worst

Access Search Insertion Deletion Access Search Insertion Deletion

Array

Stack

Singly 
linked 
list

Doubly
linked 
list





Formal Complexity Analysis

● Formally, we define Big-O as follows:

Function f(n) is O(g(n)) iff there exist positive 

constants c and n0 such that f(n) <= cg(n) for all 

n, where n >= n0.



What is happening?

for (i = 0; i < howmany; ++i)

{

for (j = i + 1; j < howmany; ++j)

{

if(nums[i] < nums[j])

{

temp = nums[i];

nums[i] = nums[j];

nums[j] = temp;

}

}

}



What is the Computing Complexity?

In this case, the N we are talking about is the

variable howmany. What we need to figure out

is how many times the segment below is

executed.

if(nums[i] < nums[j])

{

temp = nums[i];

nums[i] = nums[j];

nums[j] = temp;

}



Number of Iterations

For various values of i, let's take a look:

i     # of iterations

0     N - 1

1     N - 2

2     N - 3

and you get the picture



What is f(n)?

● This means that if the function f
represents the number of executions of
the above segment, then f(N) = (N-1) +
(N-2) + (N-3) + ... + 2 + 1.

● Those who have taken a statistics class or
studied summations can see that this
equates to f(N) = N(N-1)/2.

● We can see that this function f can be
bounded by some polynomial of 𝑁2.



Not so obvious

● What might not be so obvious is that:

● f(n) <= (1/2)n2, for n >= 1 and
therefore, n0 = 1, g(n) = n2, and c = 1/2.

● This implies that f(n) is O(n2).



Graphically



Other Computing Complexities

Problem: Give an algorithm that works in 
each of the following times:

1. O(1)

2. O(n)

3. O(log2 n)

4. O(n^2)

5. O(n log2 n)


