
STACK ADT 

1 CS300F15 



Stack 
• The stack is a LIFO (Last-in First-out) linear data 

structure. 

• The only data element that can be removed is the most 
recently added element. 

2 CS300F15 



Stack ADT Specification 
• Elements: Stack elements can be of any type, but we will 

assume StackElement. 

• Structure: Any mechanism for determining the elements 
order of arrival into the stack. 

3 CS300F15 



Stack ADT Continued 
• Domain: The number of stack elements is bounded. A 

stack is considered full if the upper-bound is reached. A 
stack with no elements is considered empty. 

• Operations: There are seven operations as follows: 

4 CS300F15 



Stack ADT Continued 
 
function create (s: Stack, isCreated: boolean) 

results: if s cannot be created, isCreated is false; 
otherwise, isCreated is true,the stack is created and is 
empty 

 
function terminate (s: Stack) 

results: stack s no longer exists 

5 CS300F15 



Stack ADT Continued 
function isFull (s: Stack) 

results: returns true if the stack is full; otherwise false is 
returned 

 
function isEmpty (s: Stack) 

results: returns true if the stack is empty; otherwise, false 
is returned 

 
function push (s: Stack, e: StackElement) 

requires: isFull (s) is false 
results: element e is added to the stack as the most 
recent element 

6 CS300F15 



Stack ADT Continued 
function pop (s: Stack, e: StackElement) 

requires: isEmpty(s) is false 
results: The most recently added element is removed and 
assigned to e 

 
function peek (s: Stack, e: StackElement) 

requires: isEmpty(s) is false 
results: The most recently added element is assigned to 
e but not removed 

7 CS300F15 



Testing your Data Structure 
• Your customer will abuse your data structure 

 
• Your data structure should never crash the customer's 

code 
•  code defensively 

• Test each each function 
•  test each function’s requires statement 
•  test boundary conditions (full/empty) 
•  test bad input 
•  test functions called in the wrong order 

8 CS300F15 



What are Stacks Useful for? 
• Web browser history. 

•  “undo” in applications. 

• Memory stack. 

9 CS300F15 



Ex. 1: Converting Decimal to Binary 
• Here is an algorithm for converting a decimal number to 

its binary equivalent: 
•  Read a number 
•  While number is greater than 0 

•  Find the remainder after dividing the number by 2 
•  Print the remainder 
•  Divide the number by 2 

•  End the iteration 

• What is the problem with this algorithm? 

• How can a stack be used to fix the problem? 

10 CS300F15 



Ex. 2: Balancing Parentheses 
• Parentheses in algebraic expressions need to be 

balanced in order for the expression to be correct. 

• Which of the following are valid expressions? 
•  {a^2 - [ (c - d)^2 + (e - f)^2 ] } 
•  {a - [ (b + c) ) ) - (d + e) ] } 
•  {a - [ [ [ (b + c) - (d + e) ] } 
•  {a - [ (b + c) - (d + e) } ] 

• How can a stack be used to test if an expression’s 
parentheses are balanced? 

11 CS300F15 



Stack Representation 
•  In stk.h 

#define NO_ERROR 0 
#define ERROR_STACK_EMPTY 1 

#define ERROR_STACK_FULL 2 

#define ERROR_NO_STACK_CREATE 3 
#define ERROR_NO_STACK_TERMINATE 4 

#define ERROR_NO_STACK_MEMORY 5 
 

#define MAX_STACK_ELEMENTS 100 

12 CS300F15 



typedef short int ERRORCODE; 
typedef char DATATYPE; 

 
typedef struct Stack *StackPtr; 

typedef struct Stack 

{ 
  int size; 

  DATATYPE data[MAX_STACK_ELEMENTS]; 
  int top; 

} Stack; 

CS300F15 13 



Stack Functions 
extern ERRORCODE stkCreate (StackPtr psStack); 
extern ERRORCODE stkTerminate (StackPtr psStack); 

extern ERRORCODE stkIsFull (const StackPtr psStack,  

                            bool *pbIsFull); 

extern ERRORCODE stkIsEmpty (const StackPtr psStack,  

                             bool *pbIsEmpty); 

extern ERRORCODE stkPush (StackPtr psStack, DATATYPE value); 

extern ERRORCODE stkPop (StackPtr psStack, DATATYPE *pValue); 

extern ERRORCODE stkPeek (const StackPtr psStack,  
                          DATATYPE *pValue); 

extern ERRORCODE stkSize (const StackPtr psStack, int *pSize); 

14 CS300F15 



Balancing Parentheses 
• Assume that all of the functions have been implemented, 

how are you going to use a stack to test if parentheses 
are balanced? 

15 CS300F15 


