STACKADT




Stack

- The stack is a LIFO (Last-in First-out) linear data
structure.

- The only data element that can be removed is the most
recently added element.



Stack ADT Specification

- Elements: Stack elements can be of any type, but we will
assume StackElement.

- Structure: Any mechanism for determining the elements
order of arrival into the stack.



Stack ADT Continued

- Domain: The number of stack elements is bounded. A
stack is considered full if the upper-bound is reached. A

stack with no elements is considered empty.

- Operations: There are seven operations as follows:



Stack ADT Continued

function create (s: Stack, isCreated: boolean)
results: if s cannot be created, isCreated is false;
otherwise, isCreated is true,the stack is created and is
empty

function terminate (s: Stack)
results: stack s no longer exists



Stack ADT Continued

function isFull (s: Stack)
results: returns true if the stack is full; otherwise false is

returned

function isEmpty (s: Stack)
results: returns true if the stack is empty; otherwise, false

IS returned

function push (s: Stack, e: StackElement)
requires: isFull (s) is false
results: element e is added to the stack as the most
recent element



Stack ADT Continued

function pop (s: Stack, e: StackElement)
requires: isEmpty(s) is false
results: The most recently added element is removed and
assigned to e

function peek (s: Stack, e: StackElement)
requires: isEmpty(s) is false
results: The most recently added element is assigned to
e but not removed



Testing your Data Structure

Your customer will abuse your data structure

Your data structure should never crash the customer's
code
code defensively

Test each each function
test each function’s requires statement
test boundary conditions (full/empty)
test bad input
test functions called in the wrong order



CS300F15 9

What are Stacks Useful for?

- Web browser history.
- “undo” in applications.

- Memory stack.



Ex. 1: Converting Decimal to Binary

Here is an algorithm for converting a decimal number to
its binary equivalent:
Read a number

While number is greater than 0
Find the remainder after dividing the number by 2
Print the remainder
Divide the number by 2

End the iteration

What is the problem with this algorithm?

How can a stack be used to fix the problem?



Ex. 2: Balancing Parentheses

Parentheses in algebraic expressions need to be
balanced in order for the expression to be correct.

Which of the following are valid expressions?
{ar2-[(c-d)*2+ (e-f)"2]}
{a-[(b+c)))-(d+e)]}
{a-[[[(b+c)-(d+e)]}

{a-[(b+c)-(d+e)}]

How can a stack be used to test if an expression’s
parentheses are balanced?



CS300F15 12

Stack Representation

- In stk.h

#define NO ERROR O

#define ERROR STACK EMPTY 1
#define ERROR STACK FULL 2

#define ERROR NO STACK CREATE 3
#define ERROR NO STACK TERMINATE 4
#define ERROR NO STACK MEMORY 5

#define MAX STACK ELEMENTS 100



CS300F15 13

typedef short int ERRORCODE;
typedef char DATATYPE;

typedef struct Stack *StackPtr;
typedef struct Stack

{
int size;
DATATYPE data[MAX STACK ELEMENTS];
int top;

} Stack;



CS300F15 14

Stack Functions

extern
extern

extern

extern

extern

extern

extern

extern

ERRORCODE
ERRORCODE
ERRORCODE

ERRORCODE

ERRORCODE

ERRORCODE

ERRORCODE

ERRORCODE

stkCreate (StackPtr psStack);
stkTerminate (StackPtr psStack);
stkIsFull (const StackPtr psStack,

bool *pbIsFull);
stkIsEmpty (const StackPtr psStack,

bool *pbIsEmpty)
stkPush (StackPtr psStack, DATATYPE wvalue);
stkPop (StackPtr psStack, DATATYPE *pValue);
stkPeek (const StackPtr psStack,

DATATYPE *pValue) ;

stkSize (const StackPtr psStack, int *pSize);



CS300F15 15

Balancing Parentheses

- Assume that all of the functions have been implemented,
how are you going to use a stack to test if parentheses
are balanced?



