Abstract data types (ADT’s)
Data Structures

- data – factual information

- structure – arrangement or relationship of elements

- The New Merriam-Webster Pocket Dictionary
Hierarchy of Data
Data Type

- A data type is defined by two properties:
 - A Domain: set of values that belong to that type.
 - A Set of Operations: defines the behavior of that type.

- Example: int
 - What is the domain?
 - What are the operations?
Primitive (Atomic) C Data Types

- Integer types: short, int, long
 - These can be preceded by unsigned
 - What is the size of int?
 - sizeof (int)

- Floating point types: float, double, long double

- Text types: char
 - What about string?

- What about Boolean?
Goal

• Build a useful data structure

• Test the data structure

• Hand that data structure off to a customer
 • future you
 • teammate
 • paying customer
 • your professor

• Profit / pass the class!
Data Structures

- A data structure can be thought of as a data type with values that:

 - Can be broken up into a set of component elements where each element is either atomic or another data structure

 - Include a set of relationships (structure) involving the component elements
Abstract Data Types (ADTs)

- An Abstract Data Type is defined in terms of its behavior rather than its representation

- An ADT has two qualities:
 - Irrelevant details are suppressed (hidden)
 - The data type being abstracted is isolated

- When defining ADTs you need:
 - The Domain
 - The Operations
Data Structure vs. ADT

• An ADT is defined by its behavior from the point of the user

• A data structure is a concrete implementation of an ADT from the point of the implementer
INTEGER ADT
Integer ADT

• Let us consider the specification for the integer ADT as follows:

• ADT: Integer

• Domain: All whole numbers i where
 \[\text{INT_MIN} \leq i \leq \text{INT_MAX}\]
 \(<\text{limits.h}>\)
Integer ADT Specification

- Operations: Given i is an integer and f & g are expressions whose result is an integer, we define the following operations for C:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unary +</td>
<td>$+f$ is the same as f</td>
</tr>
<tr>
<td>Unary -</td>
<td>$-f$ changes the sign of f</td>
</tr>
<tr>
<td>Assignment =</td>
<td>$i = f$ assigns the integer value of f to i</td>
</tr>
<tr>
<td>Binary +</td>
<td>$f + g$ is the addition of two integer values</td>
</tr>
</tbody>
</table>
STRING ADT
String ADT

• Integer is an atomic ADT

• How might we specify a structured data type such as a String?

• Before specifying the String ADT, we need to answer certain questions
String ADT Questions

• What are the domain of possible values

• What operations exist?

Language independent
Language specific

• What type are the component elements?

• What structure does the type have?
String ADT Specification

• Elements: Type char excluding the null terminating character.

• Structure: Characters are arranged linearly.

• Domain: All combinations of strings of length 0 to the max string length that can be formed from the character set.
String ADT Specification

• Operations
 • function strLength (s)
 • results: returns the number of characters in the string s
 • function strEqual (s1, s2)
 • results: returns true iff strLength (s1) equals strLength (s2) and the ith character of s1 and s2 are equal for all i where 1 <= i <= strLength (s1)
 • function strConcat (s1, s2)
 • results: string s2 is concatenated on the end of string s1; if the result exceeds the max string length, the characters are dropped

*Why 1 and not 0?
String ADT Specification

• Operations Continued
 • function strAppend (s, ch)
 • requires: strLength (s) < max string length
 • results: ch is added to the end of s increasing the length by 1
 • function strReverse (s)
 • results: the characters of s are reversed “abc” is “cba”
 • function strClear (s)
 • results: the string s is made empty
 • function strCopy (s1, s2)
 • results: string s2 is copied into string s1
ADT Implementation

• Now that the String ADT has been specified, we can focus on the best implementation choice.

• Before writing the code for each of the functions, we need to decide how we are going to represent a string.

• Code defensively! Your Data Structure should never crash the user's program.
String Representation

#define MAX_STR_LEN 256
typedef struct
{
 int length;
 char data[MAX_STR_LEN];
} String;
Problem

• For the given String representation, implement each of the following functions in C:
 • strLength
 • strCopy
 • strConcat