
1

Coding Standards for C++

Version 6.3

Updated 1/14/13

Why have coding standards?

It is a known fact that 80% of the lifetime cost of a piece of software goes to

maintenance. Therefore it makes sense for all programs within an organization to be as
consistent as possible. Code conventions also improve the readability of the software.

This document specifies the coding standards for all computer science courses using
C++ at Pacific University. It is important for you to adhere to these standards in order to

receive full credit on your assignments.

The document is divided into four main sections:

 Naming Conventions
 Formatting

 Comments
 Printing

Naming Conventions

- Constants

A constant is to be mnemonically defined using all capital letters and underscore
characters such as MAX_NAME_CHARS. Separate each word using an underscore

character. Further, your program is to contain no "magic constants." That is, all magic
constants must be declared const to make the program easier to modify and easier to

read. In the case below, 100 is a magic constant and if used in several places

throughout a program, can create problems if 100 is to be modified for any reason. Also,
the meaning of 100 is not obvious.

Poor Program Style

ins.open ("message.dat");

.....

for (indx = 0; indx < 100; ++indx)

{

.....

}

2

Correct Program Style

const int MAX_GRADE_SCORES = 100;

const string INPUT_SCORES = "scores.txt";

inputScores.open (INPUT_SCORES);

.....

for (indx = 0; indx < MAX_GRADE_SCORES; ++indx)

{

.....

}

Note: Constants like 0 and 1 are usually acceptable unless they represent values such as

true and false in which case they should be declared as constants.

- Variable Names

1) A variable name is defined in all lowercase letters unless the variable name contains
multiple names such as studentRecord. After the first word, each subsequent word has

the first letter capitalized with the remainder of the word made up of lowercase letters
and numbers.

2) Variable names are to be mnemonic unless the variable is being used in a for loop in

which case the names i, j, k, l, m, n are acceptable names to be used. If however the

nested loop is being used in conjunction with a two-dimensional array, then the names
row and column should be used.

3) Global variables must begin with g so that a name such as gHashTable denotes a

global variable.

4) To aid in identifying the type of a variable, we will use the following prefixes.

5) The prefix order is from highest precedence to lowest precedence, so for example, a
mszName is a class member that is a null terminated string.

Type Indicator is a Text Prefix Variable Name Example

class member m mName

global g char gNumFiles

pointer p int *pAge

reference r char &rSSNum

handle h void **hWindow

null terminated string sz char szFileName[10]

3

structure s Home sPerson

class object c Identity cPerson

union u Salary uPayment

boolean b bFlag

Note: Declare all variables at the top of the function, no in-code variable
declarations EXCEPT for in the initializer in a for loop.

Poor Program Style

int L (char n[])

{

 int i;

 for (i = 0; n[i] != '\0'; ++i);

 return i;

}

Good Program Style

int strLength (char szName[])

{

 int count;

 for (count = 0; '\0' != name[count]; ++count)

 {

 }

 return count;

}

- Class, Struct, and Union Names

Class, Struct, and Union programmer-defined types will follow the regular variable
naming conventions except the first letter of the class or struct MUST be capitalized.

Further, class and struct definitions are to exist in a header file (.h file) associated with
the .cpp source file associated with the project.

Note: Struct definitions do not begin with an s, class definitions do not begin with a c,

and union definitions do not begin with a u. Only variables declared using the
programmer-defined types begin with an s, c, or u.

Poor Program Style for Structs

4

struct t

{

 int d;

 int h;

 int m;

 int s;

};

Good Program Style for Structs

struct Time

{

 int mDays;

 int mHours;

 int mMinutes;

 int mSeconds;

};

Poor Program Style for Classes

class rat

{

 public:

 rat ();

 rat (int, int);

 setvalues (int, int);

 private:

 int n;

 int d;

};

Good Program Style for Classes

class Rational

{

 public:

 Rational ();

 Rational (int, int);

 int getNumerator () const;

 int getDenominator () const;

 void setNumerator (int);

 void setDenominator (int);

 private:

5

 int mNumerator;

 int mDenominator;

};

Method Name – methods are named using the standard naming convention described
for variables where the first word begins with a lowercase letter and each subsequent

word has the beginning letter capitalized. There is no need to document a method
prototype whose function is clear from the name; however, a method whose function is

not clear from the name must be documented properly.

Class Implementation

Classes need to be implemented using two files. The first file is a .h file that contains the

definition of the class. The second file is a .cpp file that contains the actual
implementation of the methods included in the class definition. The .cpp file includes

the .h file at the top of the file.

Rational Class and Implementation Example

//***

// File name: rational.h

// Author: Joe Bloggs

// Date: 1/30/12

// Class: CS250

// Assignment: Rational

// Purpose: To define the header file for the rational module

//***

#ifndef RATIONAL_H

#define RATIONAL_H

class Rational

{

public:

 Rational (int = 0, int = 1);

 void setNumerator (int);

 void setDenominator (int);

 int getNumerator () const;

 int getDenominator () const;

 void print () const;

 bool bIsqual (const Rational &) const;

 Rational multiply (const Rational &) const;

private:

 int mNumerator;

 int mDenominator;

};

#endif

6

//***

// File name: rational.cpp

// Author: Joe Bloggs

// Date: 1/30/12

// Class: CS250

// Assignment: Rational

// Purpose: Implements constructors & methods of class Rational

//***

#include <iostream>

#include "Rational.h"

using namespace std;

//***

// Constructor: Rational

//

// Description: Initializes data members to default values

//

// Parameters: numerator – the numerator of the rational number

// denominator – the denominator of the rational number

//

// Returned: None

//***

Rational::Rational (int numerator, int denominator)

{

 mNumerator = numerator;

 mDenominator = denominator;

}

//***

// Method: setNumerator

//

// Description: Changes the value of the numerator to the value input.

//

// Parameters: numerator - numerator of the rational number

//

// Returned: None

//***

void Rational::setNumerator (int numerator)

{

 this->mNumerator = numerator;

}

7

//***

// Method: setDenominator

//

// Description: Changes the value of the denominator to the value input.

//

// Parameters: denominator - denominator of the rational number

//

// Returned: None

//***

void Rational::setDenominator (int denominator)

{

 this->mDenominator = denominator;

}

//***

// Method: getNumerator

//

// Description: Returns the value of the numerator.

//

// Parameters: None

//

// Returned: The numerator value

//***

int Rational::getNumerator () const

{

 return this->mNumerator;

}

//***

// Method: getDenominator

//

// Description: Returns the value of the denominator.

//

// Parameters: None

//

// Returned: The denominator value

//***

int Rational::getDenominator () const

{

 return this->mDenominator;

}

8

//***

// Method: print

//

// Description: Outputs a rational number in the form numerator / denominator

// to the screen

//

// Parameters: None

//

// Returned: None

//***

void Rational::print () const

{

 cout << " " << getNumerator() << "/" << getDenominator();

}

//***

// Method: bIsqual

//

// Description: Compares two objects of Rational returning a value of true if

// the numerators and denominators of both rational numbers are

// the same.

//

// Parameters: fraction – rational object having a numerator and denominator

//

// Returned: true if objects are equal; else, false

//***

bool Rational::bIsqual (const Rational &fraction) const

{

 return (mNumerator == fraction.mNumerator &&

 mDenominator == fraction.mDenominator);

}

//***

// Method: multiply

//

// Description: Multiples the numerators and denominators of two objects.

//

// Parameters: fraction – rational object having a numerator and denominator

//

// Returned: An object of type Rational that contains the result of the

// multiplication.

//***

Rational Rational::multiply (const Rational &fraction) const

{

 Rational tempFraction;

 tempFraction.mNumerator = mNumerator * fraction.mNumerator;

 tempFraction.mDenominator = mDenominator * fraction.mDenominator;

 return tempFraction;

}

9

Formatting

- Indentation

Two spaces must be used as the unit of indentation per tab. Every IDE (Integrated

Development Environment) such as Visual Studio includes an option for changing the
number of spaces in a tab. These can usually be found in the preferences section. In

Visual Studio 2010 go to Tools->Options ->Text Editor->C/C++->Tabs. At this point
make sure the Tab Size and Indent Size are 2 and that the radio button for insert spaces

is selected. Select these options before typing in any of your code.

- Line Length

Lines must be no longer than 80 characters. Anything longer than 80 characters is
normally not handled well in many terminals and tools. Further, a line longer than 80
will not wrap nicely when outputted.

- Wrapping Lines

10

If an expression cannot fit on a single line then break it:

 After a comma

 Before an operator

Make sure that the new line is aligned with the beginning of the expression at the same
level on the previous line. As an example, consider a long cout statement as follows:

cout << “The number of females is: “ << female << “The number of males is:

“ << male << endl;

would be written as:

cout << “The number of females is: “ << female

 << “The number of males is: “ << male << endl;

- Spaces

All arithmetic and logical operators must have one space before and after the operator.
The only exceptions are:

 Unary operators

 The period
 No spaces before the comma and only one space after the comma

A single space must precede each left paren.

- Blank Lines

Use blank lines to separate distinct pieces of code. For example, one blank line before

and after a while loop helps the code reader. The important thing to remember is that
blank lines must be used consistently.

- Braces

Any curly braces that you use in your program (e.g. surrounding classes, functions)

must appear on their own lines. Any code within the braces must be indented relative to
the braces.

class User

{

public:

 User();

11

private:

 char mszFirstName[MAX_NAME_SIZE];

 char mszLastName[MAX_NAME_SIZE];

};

Comments

Comments are used to explain the purpose of the code fragment they are grouped with.
Comments state what the code is doing, while the code itself shows the implementation.

Use comments as follows:

- File Header

The main purpose of a file header is to explain the purpose of the program as briefly as
possible. You must include the following sections in your program header:

 File name

 Your name
 Date

 Class Title
 Assignment Title

 Purpose

//***

// File name: main.cpp

// Author: Joe Bloggs

// Date: 1/30/12

// Class: CS250

// Assignment: Rational

// Purpose: This program is the driver to test the rational module.

//***

- Declaration Comments

Variables must be declared one per line. Each variable can have a sidebar comment to

the right indicating the variable’s purpose if the purpose of the variable is not totally
obvious. Do not put any blank lines between the variables being declared. You must also

group together variables that are related.

int seconds;

int minutes;

int hours ;

char szFirstName[MAX_NAME_SIZE];

12

char szLastName[MAX_NAME_SIZE];

None of the above variables need to be documented because it is obvious what they
represent. When your programs become more complicated, some variable names might
need a little documentation.

- Sidebar Comments

A sidebar comment appears on the same line as the single statement it is describing.
The comment must be brief and not exceed that line. Try and line up your sidebar

comments as much as possible for easy reading. The following is an example of a
sidebar comment although experienced C++ programmers know what this statement

does, thus, documentation is not necessary.

value <<= 1; // multiply value by 2

- In-line Comments

In-line comments appear on their own lines and precede the segment of code they
describe. You must use in-line comments to describe complex code that is not limited to
a single statement. You must use one blank line to separate the comment from the

segment of code being described. Every block of code (if statement, for loop, while loop,
do-while loop, switch statement, …) must have an in-line comment preceding the actual

code briefly letting the reader know what the code is doing. Here is an example.

 int tempInt;

 // Euclid's Algorithm for finding the greatest common divisor

 while (0 != numTwo)

 {

 numOne %= numTwo;

 tempInt = numOne;

 numOne = numTwo;

 numTwo = tempInt;

 }

- Function/Method Header

In the same way that a program header is used to describe the purpose of the program,

the function/method header must be used to describe the purpose of the function. All
your function/method headers must include the following:

13

 Method name
 Description

 Parameters
 Returned

//***

// Method: setNumerator

//

// Description: Changes the value of the numerator to the value input.

//

// Parameters: numerator - numerator of the fraction

//

// Returned: None

//***

void Rational::setNumerator (int numerator)

{

 this->mNumerator = numerator;

}

Program Organization

- Procedural programming solution

1) File Documentation
2) Any #includes (using the memory leak include code is mandatory when dynamic

memory is used)
3) using namespace

4) all constants to be used in the file
5) all programmer-defined data types (structs, classes, enums)

6) all function prototypes
7) all function definitions beginning with main

- Object-oriented programming solution

Solutions must use classes where the class interface exists in a .h file and the class
implementation exists in the .cpp file

14

Class Interface

1) File Documentation
2) Any #includes

3) using namespace (if necessary … do not include if not necessary)
4) all constants to be used in the file

5) a single class interface

Class Implementation
1) File Documentation

2) Any #includes
3) using namespace (if necessary … do not include if not necessary)

4) all constants to be used in the file
5) all private methods

6) all public methods

Printing

When printing your code, you must use a fixed width font. Courier and Courier New are

examples of fixed width fonts. You must also make sure that your lines do not wrap nor
do they get cut off when printing. All printing is to be done in Portrait and the printing

order for the files is as follows:

1) the program file containing main
2) class header (.h) / implementation (.cpp) pairs for each class

Note: Each module is to have a separate .h and .c file.

The final output you will turn in is to be printed in color since comments, keywords,
strings, etc are highlighted for easy reading. Multiple pages are to be printed double-

sided (i.e. the ENTIRE job is printed by the printer double-sided without feeding in
additional paper with a different orientation during the print job) and stapled in the

upper-left corner.

