
CS250 Intro to CS II

Spring 2015

Spring 2015 CS250 - Intro to CS II 1

Chapter 9 - Arrays, Pointers, Dynamic
Memory

Chapter 14.4 Copy Constructors

•  Reading: pp. 505-526

•  Good Problems to Work: p.510 9.1, 9.3, 9.4, 9.5,
9.6, 9.7

•  Reading: pp. 825-830

•  Good Problems to Work: p. 879 6, 7, 8, 9, 10, 11,
18

Spring 2015 CS250 - Intro to CS II 2

Arrays and Pointers

•  Array names can be used as constant
pointers

•  Pointers can be used as array names

short numbers[] = {5, 10, 15, 20, 25};

cout << "numbers[0] = " << *numbers << endl;
cout << "numbers[1] = " << *(numbers + 1) << endl;
cout << "numbers[2] = " << numbers[2] << endl;

Spring 2015 CS250 - Intro to CS II 3

Problem

•  Consider the following C++ segment

const int SIZE = 8;
int numbers[] = {5, 10, 15, 20, 25, 30, 35, 40};
int *pNumbers, sum = 0;

•  Write the C++ code using only pointer
notation that will print the sum of the values
found in the array numbers

Spring 2015 CS250 - Intro to CS II 4

Pointer Arithmetic

•  Some mathematical operations can be performed on
pointers

a)  ++ and -- can be used with pointer variables
b)  an integer may be added or subtracted from a

pointer variable
c)  a pointer may be added or subtracted from

another pointer
If the integer pointer variable pInt is at location 1000, what is
the value of pInt after pInt++; is executed?

Spring 2015 CS250 - Intro to CS II 5

Pointers and Functions

•  What are the two ways of passing arguments into
functions?

•  Write two functions square1 and square2 that
will calculate and return the square of an integer.
o  square1 should accept the argument passed by

value,
o  square2 should accept the argument passed by

reference.

Spring 2015 CS250 - Intro to CS II 6

Pointers as Function Arguments

•  A pointer can be a formal function parameter

•  Much like a reference variable, the formal
function parameter has access to the actual
argument

•  The address of the actual argument is
passed to the formal argument

Spring 2015 CS250 - Intro to CS II 7

Pointers as Function Arguments

void square3 (int *pNum)

{

 *pNum *= *pNum;

}

•  What would a function call to the above function
look like?

Spring 2015 CS250 - Intro to CS II 8

Pointers to Constants

•  A pointer to a constant means that the compiler
will not allow us to change the data that the pointer
points to.

void printArray (const int *pNumbers)
{
}

Spring 2015 CS250 - Intro to CS II 9

Constant Pointers

•  A constant pointer means that the compiler will not
allow us to change the actual pointer value BUT
we can change the data that the pointer points to.

void printArray (int * const pNumbers)
{
}

Spring 2015 CS250 - Intro to CS II 10

Constant Pointers to Constants

•  A constant pointer to a constant means the
compiler will not allow us to change the actual
pointer value OR the data that the pointer points
to.

void printArray (const int * const pNumbers)
{
}

Spring 2015 CS250 - Intro to CS II 11

Problem

Using pointer notation, write a C++ function
printCharacters that will accept a character array
and the size of the array. The function will print
each element of the array on a separate line.

Spring 2015 CS250 - Intro to CS II 12

Dynamic Memory Allocation

•  Variables can be created and destroyed
while a program is running

•  new is used to dynamically allocate space
from the heap. A pointer to the allocated
space is returned

•  delete is used to free dynamically
allocated space

Spring 2015 CS250 - Intro to CS II 13

Using new and delete

int *pInt;

pInt = new int;

*pInt = 5;

cout << *pInt << endl;

delete pInt;

Spring 2015 CS250 - Intro to CS II 14

Pointers to Arrays

•  We can dynamically create space for an
array

int *pAges, sum = 0;
pAges = new int[100];
for (int i = 0; i < 100; ++i)
{
 *(pAges + i) = i; // or pAges[i] = i;
}
delete [] pAges;

Spring 2015 CS250 - Intro to CS II 15

NULL Pointer

•  A null pointer contains the address 0
•  The address 0 is an unusable address

pAges = new int[100];
if (NULL == pAges)
{
 cout << “Memory Allocation Error\n”;
 exit (EXIT_FAILURE);
}

•  Only use delete with pointers that were used with
new

Spring 2015 CS250 - Intro to CS II 16

Memberwise Assignment

Consider the following C++ code:

Rectangle cBox1 (10.0, 5.0), cBox2;

What is the meaning of:

cBox2 = cBox1;

Spring 2015 CS250 - Intro to CS II 17

Destructors

•  The opposite of constructors

•  Have the same name as the class, with a ~ in front
of it

•  Called whenever an object is destroyed

•  A destructor has no arguments and or return value

•  Only one destructor allowed!
•  No need for us to explicitly declare a destructor

unless there are pointer variables in the class

CS250 - Intro to CS II 18 Spring 2015

Constructor/Destructor Example

class Test
{
 public:
 Test(int);
 ~Test();

 private:
 int mId;
};

Test::Test(int i)
{
 mId = i;
 cout << "constructor for " << mId << " is called\n";
}

Test::~Test()
{
 cout << "destructor for " << mId << " is called\n";
}

CS250 - Intro to CS II 19 Spring 2015

What is the output?

void funct();

int main()
{
 Test cTest1(1);
 funct();
 Test cTest3(3);

 return EXIT_SUCCESS;
}

void funct()
{
 Test cTest2(2);
}

CS250 - Intro to CS II 20 Spring 2015

Copy Constructor

•  A copy constructor is a special constructor called
when a new object is created and initialized with
the data from another object

•  Most times the default memberwise assignment is
OK. When is this not the case?

Spring 2015 CS250 - Intro to CS II 21

class Person Interface

#ifndef PERSON_H
#define PERSON_H

class Person
{
 public:
 Person (char * = NULL, unsigned short = 0);
 Person (const Person &);
 ~Person ();
 const char *getName () const;
 int getAge () const;

 private:
 char *mpszName;
 unsigned short mAge;
};

#endif

Spring 2015 CS250 - Intro to CS II 22

class Person Implementation

#include "Person.h"
#include <iostream>
using namespace std;
// Constructor
Person::Person (char *pszName, int age)
{
 if (NULL != pszName)
 {
 int nameLength = strlen (pszName);
 mpszName = new char[nameLength + 1];
 strncpy_s (mpszName, nameLength + 1,
 pszName, nameLength + 1);
 mAge = age;
 }
}

Spring 2015 CS250 - Intro to CS II 23

class Person Implementation

// Copy Constructor used to initialize an object
// being created
Person::Person (const Person &rcPerson)
{
 if (NULL != rcPerson.mpszName)
 {
 int nameLength = strlen (rcPerson.mpszName);
 mpszName = new char[nameLength + 1];
 strncpy_s (mpszName, nameLength + 1,
 rcPerson.mpszName, nameLength + 1);
 mAge = rcPerson.mAge;
 }
}

Spring 2015 CS250 - Intro to CS II 24

class Person Implementation

Person::~Person ()
{
 delete [] mpszName;
}

const char *Person::getName () const
{
 return mpszName;
}

unsigned short Person::getAge () const
{
return mAge;
}

Spring 2015 CS250 - Intro to CS II 25

Person Driver

#include "Person.h"
#include <iostream>

using namespace std;

int main ()
{
Person cPerson ("John Smith", 18);

cout << cPerson.getName () << " is "
 << cPerson.getAge () << " years old." << endl;

return EXIT_SUCCESS;
}

Spring 2015 CS250 - Intro to CS II 26

What happens?

•  If we add the following code before the return,
what happens?

cTempPerson = cPerson;

cout << cTempPerson.getName () << " is "
 << cTempPerson.getAge () << " years old."
 << endl;

Spring 2015 CS250 - Intro to CS II 27

Results … Why?

Spring 2015 CS250 - Intro to CS II 28

Problem Still Exists

•  What is the difference?

Person cTempPerson = cPerson;

cTempPerson = cPerson

•  What is the solution?
•  Grab the CopyConstructor Solution in CS250 Public and

let’s make sure we understand this concept

Spring 2015 CS250 - Intro to CS II 29

