CS150 Intro to CS I

Fall 2015
Chapter 2
Introduction to C++

- Reading: Chapter 2 (2.4 to 2.10), Chapter 3 (3.1)
- Good Problems to Work: pp. 40 [2.5], pp.47 [2.7, 2.8], pp.53 [2.11, 2.12, 2.15]
Variables

- Named storage location for holding data
 - named piece of memory
- You need to determine what variables you need in your program
 - what data do we need to handle?
Variable Definition

```c
int number;
```

- Tells the compiler
 - the variable’s type (int)
 - the variable’s name (number)

- `int` is short for integer
- Variable definitions end with a semicolon
- Every variable must be defined
C++ Assignment Statement

number = 5;

- = is an operator that copies the value from the right into a variable on the left
- The item to the left of the = operator must be a variable
- You cannot write 5 = number;
Variables in a program

```c++
// This program has a variable called number
#include <iostream>
#include <string>
using namespace std;

int main() // what is the output of this program?
{
    int number;

    number = 5;
    cout << "Number is " << number << endl;

    number = 7;
    cout << "Now number is " << number << endl;

    return EXIT_SUCCESS;
}
```
cin object

- cin is an executable statement
- cin is the standard input object
- The keyboard is the standard input device
- cin is a stream object and works with streams of data
- The executable statement
  ```
  cin >> number;
  ```
 places the value a user types at the keyboard into the variable number?
cin object

- Input operator (extraction operator): `>>`
- Standard input (from keyboard): `cin`
- Whatever the user types in is stored in the variable to the right of the operator (the right operand)
 - All variables must be previously declared
- When reading in the data typed by the user
 - Any spaces before the data item are skipped
 - Reading continues until the user hits return
What is the output?

Consider the following program:

```cpp
int num1;
int num2;

cout << "Enter two numbers: ";
cin >> num1 >> num2;
cout << num1 << " " << num2 << endl;
```

- What is output if the user enters: 10 12
 What is the output if the user enters: 5 10 15
Variable Definition

We now know that:

```
int number;
```

What is an identifier?!
Identifiers (Variables)

- Programmer-defined names that represent some element of a program

- C++ limits on variable names:
 1. Identifiers must begin with a letter or an underscore
 2. Identifiers must consist of letters, numbers and underscore, nothing else
 3. Identifiers cannot be a `keyword`
Identifiers (Variables)

- Identifiers are case sensitive
  ```
  int totalCost;
  int TotalCost;
  ```

- Use meaningful variable names
  ```
  int width;
  int w;
  ```
Data types

- A data type defines:
 - how the computer interprets data in memory
- C++ has many data types including:
 - Numerical data: `int`, `double`, `float`
 - Textual data: `string`
 - Character data: `char`
 - Binary data: `bool`
Integer (int)

- The main integer data type is `int`
 - Others are `short` and `long`
- `ints` are finite (why?)
- An `int` without a sign (+ or -) is assumed to be positive
- 2,353 is not an `int` while 2353 is an `int`
- Operations?
Character (char)

- The char data type is used to store a single character (a letter, a digit, or a special character)
 - ASCII is the internal representation for a char

- Character literals are enclosed in single quotes
- Examples of character literals are: ‘A’, ‘a’, ‘*’, ‘2’, ‘$’
Program

```cpp
#include <iostream>

using namespace std;

int main()
{
    char letter;

    letter = 'A';
    cout << letter << ' ';
    letter = 'B';
    cout << letter << endl;
    return EXIT_SUCCESS;
}
```
string Class

- string is used to store a list of characters
- Need to include the preprocessor directive

```cpp
#include <string>
```

- why?
string Questions

- How do we declare a variable of type string?
- How do we assign a value to the variable?
- How do we output a string literal and a string variable?
- What is the difference between ‘A’ and “A”?
Floating-Point (**double**)

- **double, float, long double**
 - positive and negative
 - no unsigned float!
- Scientific Notation
- Examples:
 - 1.0, -2.3, -0.3, 12E5, -1E-2, 1.4e+8
- 2,353.99 is not a **double**
- 2353.99 is a **double**
Examples

- Remember, the format for declaring variables is:
 - `data-type` identifier;

- You can declare variables of the different data types as follows

```c
int num1;
double num2;
char letter;
string name;
```
Boolean (\texttt{bool})

- Variables of type \texttt{bool} can be either \texttt{true} or \texttt{false}
 - They cannot be any other value
 - For coding standards, we precede boolean variables with a b
- Example

```cpp
bool bValue;
bValue = true;
cout << bValue << endl;
bValue = false;
cout << bValue << endl;
```
Identifier Problem

Which of the following declarations are invalid and why?

1. `char Letter1;`
2. `char 1letter;`
3. `double inches, kms;`
4. `double inches*num;`
5. `int joe’s;`
6. `Int cent_per_inch;`
7. `double two-dimensional;`
8. `char hello;`
9. `int return;`
10. `size int;`