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Floating-point Arithmetic 

 

Reading: pp. 312-328 

Floating-Point Representation 

Non-scientific floating point numbers: 

 

A non-integer can be represented as: 
2423222120.2-12-22-32-4 

 

where you sum up the integer to the left of the decimal point and the fraction to the 

right. 
 

So, what is -1101.0101 in decimal? 

 

 
 

13 3/8 = 13.375 = 8 + 4 + 1 + 1/4 + 1/8 in binary is: 1101.011 

 

What about repeating decimals? i.e. 0.3333333333 

 
In general, the way to convert decimals into binary is the following: 

1. Convert whole number part (if >1) using repeated division by two 

2. Multiply the remaining fraction by the radix to get first digit right of the radix 

3. Repeat step 2 until 
a. result is a whole number or 

b. a recognizable pattern emerges or 

c. you have extended the binary number to an acceptable precision 

 
Examples: 

 

1. What is 6.5859375 in binary using the above representation? 

 

 
 

 

 

 
 

2. What is 1/3 = 0.3333333 in binary? 
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Scientific Notation: 

 

You use floating point notation to represent very large or very small numbers.  
 

Rewrite 53,760,000 using scientific notation:   

 

Rewrite .00005376 using scientific notation:    
 

The same thing can be done with binary numbers. The notation for this is: 
 

e
Bm

±
±  

 

The binary number 1101.011 is the same as 1.101011 x 23 
 

Let us now consider 16 bit floating point numbers in the following format: 

 

Bit 
Number 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Contents se e4 e3 e2 e1 e0 sm m1 m2 m3 m4 m5 m6 m7 m8 m9 

 

Where: 

se: is the sign of the exponent 

e4 e3 e2 e1 e0: is the exponent 
sm: is the sign of the mantissa (significand) 

m1 m2 m3 m4 m5 m6 m7 m8 m9 is the mantissa or significand digits 

 

With this breakdown of the 16 bits, our number is: 

sm .m1m2m3m4m5m6m7m8m9 x 2 se e4e3e2e1e0 

The requirements that the first bit in the mantissa is nonzero and follows the radix point 

results in what is known as a normalized number. This normalization ensures that all 
numbers have a unique representation.   

 

To decode a floating point number in the above format, consider the following example:  

 

0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0

 

This pattern corresponds to -.10111 x 25 (note: the exponent of 00101 is 5 in decimal 

notation).  At this point we can either decode the mantissa and multiply by 25 or simplify 

things a bit by moving around the radix point.  

-.10111 x 25 = -10111. x 20 = -23 in base 10 
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To encode a number in floating point notation, we simply reverse the process 

(remember to normalize the number):  

 
3/8 is .011 in binary, so we have  

.011 x 20 = .11 x 2-1 (the right-hand term is the normalized form of the 

number) 

and so we encode the number as:  

 

1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0
 

   

Examples for you: 

 

P1. Encode -46  as a 16-bit normalized floating point number using the above 

format. 

 
 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

P2. Decode the following 16-bit floating point number using the above format: 

 

0 0 0 1 1 1 1 1 0 0 1 0 1 1 0 0 
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Q1: What is the range of the exponent using the above format?  

 

Q2: What is the range of the mantissa using the above format?  

 

Q3: What is the largest number that can be represented by this 16-bit floating-point 

number?  

 

IEEE Standard 754 Floating-point format 

This standard was developed to allow portability of programs among various computers 

and also allow complex numerical programs. This standard has been widely adopted and 

therefore can be found in most programming environments.  

There is a 32-bit and 64-bit representation. The principal feature of this representation 
features the hidden 1 since the numbers are all normalized. We will discuss this in 

greater detail later on.  

Single-precision format 

 
-|--------|----------------------- 
S     E              F 
 

where S is the sign bit, E is a binary integer (8 bits), and F is a binary fraction (23 bits).  

The value of this number is: (-1)S x 2E-127 x 1.F  

The representation used for the exponent is called a "biased representation." This means 

that a fixed value called the bias is subtracted from the binary value of E to get the 

actual value.  

Q6: What is the bias of the IEEE 754 fp format? What are the ranges that the exponent 

can represent?  
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P3: Find what value C03E0000 represents using the IEEE 754 FP format.  

 

 

 

 

 

 

For double-precison, the value of this number is: (-1)Sx2E-1023x1.F  

P4: Find the value C03E000000000000 represents using the IEEE 754 double-precision 

FP format.  

 

 

 

 

 

 

 

 

It is important to note that not all bit patterns in the IEEE format are interpreted in the 

same way. I will discuss the single-precision examples and you can extend this to 

include double-precision. The following are some exceptions:  

• An exponent of 0 with a fraction of 0 represents +0 or -0 depending on the sign 

bit.  

• An exponent of all 1's with a fraction of 0 represents positive or negative infinity.  
• An exponent of 0 with a nonzero fraction represents a denormalized number.  

• An exponent of all 1's with a nonzero fraction represents a NaN (not a number) 

and is used to represent various exceptions.  

• Exponents in the range of 1-254 with normalized fractions implies the resulting 
exponent value will be in the range of -126 to +127. Since the number is 

normalized, we do not need to represent the 1. This bit is implied and called the 

hidden 1. It is actually a way of adding one more bit of precision to the fraction.  
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P5: Let's go the other way and find the representation of -1.0 in IEEE 754 FP single-

precision format. Express your result in hex only. 


