Integer Arithmetic
Reading: pp. 296-302
Addition

In general, we know the following is true:

0

PR OO
+ + + +

ROOO
OrEFrOo

1
0
1
P1: Perform the following addition and interpret the result in: (a) modulo 2~n and (b)

two's complement notation.

010010101 10101010
+000111001 +10101010

We must become familiar with the use of the carry. There are a couple of different
carries that we must concern ourselves with. The carry-in and carry-out.

P2: Add the following two binary values discussing what is meant by carry-in and carry-
out.

00001111
+01010101

Note: The carry-out of the MSB is the value that the external carry flag found in the
flags register takes on.

Q1: In the previous example, what would be the value of the external carry? Why?

Half-Adders and Adders



Subtraction

Subtraction works a little differently than one would think. In particular, subtraction is
performed by taking the two's complement of the subtrahend and adding this value to
the minuend. Let's look at the following example for some clarification.

Perform the following subtraction:

00110011 (Minuend)
-00001111 (Subtahend)

Q2: Before performing the subtraction, identify the two numbers being subtracted.
Assume the numbers are represented in modulo 2™n.

P3: Now perform the subtraction.
Q3: Interpret the result. Is it what you would expect it to be?
P4: Switch the minuend and the subtrahend from the above problems and then perform

the subtraction. Interpret the result if the numbers are: (a) modulo 2*n and (b) two's
complement numbers.



Arithmetic Overflow

Remember that the range of values that can be represented using 8-bits for modulo 2™n
numbers is 0 to 255 and for two's complement is -128 to 127. The microprocessor will
perform the addition or subtraction of two numbers, but the question is how do we know
if the result is correct. That is, if we add two 8-bit numbers and the result is larger than
the representation allows, how do we know this happened. The answer lies with two
flags: (a) the carry flag and (b) the overflow flag.

First we will define overflow as a condition such that an arithmetic operation produces a
result outside the range of the number system being used.

P5: Perform the operations below and interpret the result in: (a) modulo 2~n and (b)
two's complement notation.

11111111 01111111
+00000001 +00000001

Q4: Were there any examples of overflow? Identify each case and briefly explain why.

Test each example using debug in Windows XP.

cv CAWINDDWS' system32'cmd.exe - debug

C:\DOCUME™1\ryandj>debhuyg

-

AX=0008 BX=0008 CX=000A@ DX=ABBAB SP=FFEE BP=8008 SI=0000 DI-=0000
DS=ABFC ES=BBFC SS=BBFC CS=0BFC IP=0100 NU UP EI PL NZ NA PO NC
BBFC:0100 BOAA MOU AL.AA

10108 mov al.ff
19182 mov bl.1
:A184 add al.bl
19186

=180 166

AX=0000 BX=-A001 CX-=-0808 DX=-0008 SP=FFEE BP=-0808 SI-=-0008 DI-=-80080
DS=BBFC ES=BABFC SS=BBFC CS=BBFC IP=8186 NU UP EI PL ZR AC PE CY
OBFC:0106 893E7891 MOU [91781.DI DS :92178 =000




cv CAWINDDWS' system32'.cmd.exe - debug

C:\DOCUME™1\ryandj>debuyg

I

AX=0008 BX=0008 CX=000A@ DX=ABBA SP=FFEE BP=68008 SI=0000 DI-=0000
DS=ABFC ES=BBFC SS=BBFC CS=0BFC IP=0100 NU UP EI PL NZ NA PO NC
BBFC:0100 BOGOA MOU AL.Aa

10108 mov al.,?f
19182 mov bl.1
@184 add al.bl
19186

AX=0080 BX=0001 CX-=-0808 DX=-0008 SP=FFEE BP=-0808 SI-=-0008 DI-=-8000
DS=BBFC ES=BABFC SS=BBFC CS=BBFC IP=8186 OU UP EI NG NZ AC PO NC
BBFC:01086 893E7891 MOU [91781.DI DS :9178=0000

Let's perform the following additions and determine where any overflows occurred.

1001 1100
+0101 +0100
0011 1100
+0100 +1111
0101 1001
+0100 +1010

Let's perform the following subtractions and determine where any overflows occurred.
Represent the numbers in 2’s complement.

2 -7 5 -2
(-3) -2 5 - (-2)
7 — (-7) (-6) - 4



For each of the following, perform the additions, convert the binary numbers to decimal
where the binary numbers are represented in two's complement, and indicate where a
carry-out or overflow occurs.

11011001 11101101 00101100
+01011100 +11111001 +00101101
01101000 10110101 10011001
+00101101 +00111011 +10111011
00001010 01111111 11111111
+11111101 +00000001 +00000001




