
 1

Instruction Cycle and Pipelining

12.3 Instruction Cycle (pp. 423-427)

12.4 Instruction Pipelining (pp. 427-441)

Recall from Chapter 3 that the instruction cycle looks like:

We took a little more detailed look at the above diagram this way:

 2

And after Chapter 11, we see that the complexity of the diagram now looks like:

Q1: What is the difference in English between Figure 3.12 and Figure 12.5?

Q2: Give an x86 instruction that can be used to discuss Figure 3.12. Using your

instruction, show how the instruction goes through the various stages of execution. Also,
the following diagram might help.

 3

Q3: Do the same thing in Q2 for Figure 12.5. The following diagram might help.

Instruction Pipelining

Organization enhancements to the processor over time have greatly improved

performance. Examples include multiple general purpose registers instead of a single
accumulator and the use of cache and multiple levels of cache to name a few. The next

organizational feature to discuss is instruction pipelining.

Pipelining is a technique that improves instruction throughput by executing as many
instructions as possible in parallel. In particular, these instructions are in various

"stages" of pipeline execution.

Instruction pipelining is very much like the assembly line at a manufacturing plant where
products in various stages of production can be worked on simultaneously.

If we examine Figure 12.5 above, we could think of each state as a task; therefore,

there are 10 tasks which occur in sequence. Obviously, some kind of instruction

pipelining is possible.

 4

Before discussing instruction pipelining in detail, it is useful to discuss the various stages
of instruction processing. In particular, we will break up instruction processing into the

following six stages:

1. FI (fetch instruction) - get the next instruction

2. DI (decode instruction) - decode the opcode and operands
3. CO (calculate operands) - calculate EA of the operands

4. FO (fetch operands) - fetch operands from memory (not necessary for register

data)

5. EI (execute instruction) - execute instruction storing result if necessary

6. WO (write operand) - write the result in MEM

In a perfect world, this would lead us to an architecture that has a CPU with a six stage
pipeline where each stage takes an equal duration of time to execute.

Q4: Do the above pipeline stages take the same duration of time to complete their
specific operation? If not, give two stages that can have different durations of time to

complete their task.

Q5: Assuming no pipelining and each stage in the pipeline takes 1 unit of time to

complete, how long would it take 5 instructions to complete?

Q6: Assuming a six stage pipeline and each stage in the pipeline takes 1 unit of time to

complete, how long would it take 5 instructions to complete (assuming no delays)?

Answer:

 5

Let's examine some quantitative principles of computer design that I will be using for the

remainder of the course.

Speedup

"Speedup" is a very simple, useful term that allows us a way to measure performance
and execution times.

Speedup = Time(Old)/Time(New)

Example: A trip to downtown Portland takes 50 minutes by car and 30 minutes by MAX.

What is the speedup? Answer: speedup=50/30=1.6666

Q7: Car to Seattle takes 3.5 hours and a plane to Seattle takes 1 hour. Compute the

speedup.

Q8: A 486 takes 20 minutes to compile a program. A Pentium takes 6 minutes to

compile the same program. Compute the speedup.

New is faster than Old if Time(New)<Time(Old)

New is N% faster than Old given: Speedup = Time(Old)/Time(New) = 1+N%

Therefore as an example, speedup of MAX over car is 1.6666; therefore, MAX is 66.66%

faster than the car.

Q9: How much faster is the Pentium than the 486?

Notice, it is also the case that:

Speedup = Speed(New)/Speed(Old)

Q10: A plane flies to Seattle at 150MPH(average). I could take a jet that flies at

250MPH. What is the speedup?

Amdahl's Law

Given a job, some fraction of that job may be enhanced.

In particular, if we can make some enhancement to a particular machine that improves
performance, speedup will tell us how much faster the machine is with the enhancement

versus the machine without the enhancement.

Q11: Let's assume it takes us 1 hour to drive to Portland. From Portland, it takes us 3

hours by train to get to Seattle. What is the speedup if we fly instead and it takes 1 hour

to fly to Seattle?

Answer: speedup = Time(Old)/Time(New) = 4/2 = 2.0

 6

Q12: How much faster is the trip if we fly to Seattle versus taking the train?

Answer: Flying is 100% faster than taking the train.

fraction(enhanced) - is the fraction of the "original" time that can be enhanced.

Q13: What is the fraction(enhanced) in Q11?

Answer: 3 hours can be enhanced, so fraction(enhanced) is 3/4=75%.

Further examples to clarify the fraction(enhanced) include the following:

• Speeding up the floating-point calculations doesn't speed up the integer
calculations

• If we are traveling to Eugene and speedup the highway driving somehow, that

doesn't speedup the packing, walking to the car, ...

An interesting observation is that if we do the fraction(enhanced) at infinite speed, this

gives us the maximum speedup for that enhancement.

Back to our story

Q14: What is the speedup of the six stage pipelined machine versus the machine with

no pipelining?

