
 1

Chapter 12 – Processor Structure and Function 

 
12.1 Processor Organization (pp. 416-418) 
12.2 Register Organization (pp. 418-423) 
 
Processor Requirements 
 
• Fetch Instruction 
• Decode Instruction 
• Fetch Data 
• Process Data 
• Write Data 
 
Remember, a simplified view of the processor looks like the following: 
 

 
 

 



 2 

Registers fall into two categories: 
 
User-visible – available to the programmer to minimize memory references 
 
1. General Purpose – can be used for a variety of purposes 
2. Data – used to hold data but cannot be used in the calculation of an operand address 
3. Address – can be somewhat general purpose or used for a particular addressing mode 

(e.g. segment registers, index registers, stack pointer) 
4. Condition Codes – bits set by the processor as the result of a particular operation 
 
Some processors use condition codes and some do not. 
 
Q1: The x86 uses condition codes. Give an example of several condition codes. 
 
 
 
Q2: Show how a condition code can be used. 
 
 
 
 
 
 
 
 

 
 



 3 

Control and Status Registers  
Used by the processor's control unit and by privileged OS programs to control program 
execution. 
 
We've already discussed uses for the: 
 
• Program Counter (PC) 
• Instruction Register (IR) 
• Memory Address Register (MAR) 
• Memory Buffer Register (MBR) 
 
Remember, the processor updates the PC after each instruction fetch to point to the 
next instruction to execute. 
 
Consider the following x86 assembly language program: 
 
13CF:0100 B80000        MOV     AX,0000 

13CF:0103 BB0000        MOV     BX,0000 

13CF:0106 40            INC     AX 

13CF:0107 01C3          ADD     BX,AX 

13CF:0109 3D0A00        CMP     AX,000A 

13CF:010C 75F8          JNZ     0106 

13CF:010E 90            NOP 

 
Q3: What does the above program do? 
 
 
 
Q4: What is the initial value of the PC? 
 
 
Q5: What is the PC called in the x86 world? 
 
 
Q6: What is the value of the PC after the first assembly language statement is executed? 
 
 
Q7: Which of the above statements affect the condition codes? 
 
 
 
Q8: Why is the machine language for JNZ 0106 equal to 75F8? 
 
 
 
Q9: How is the PC updated after execution of the statement JNZ 0106? 
 
 



 4 

As for register organization, consider the following processors: 
 

 
 

Problem 
Fill in the blanks in the machine language code below. Check your results using debug. 
There are no labels using debug but an examination of some sample debug code will 
show you how to jump to a location. 
 
  01ff: 0123  90  top:  nop 
  01ff: 0124  41    inc cx 
  01ff: 0125  03 d1   add dx,cx 
  01ff: 0127  83 fa 14  cmp dx,20 
  01ff: 012a  74 __     je out1 
  01ff: 012c  41    inc cx 
  01ff: 012d  48    dec ax 
  01ff: 012e  75 __     jne top 
  01ff: 0130  90  out1: nop 
 



 5 

MIPS 
In the early 1980s, a new trend in the design of processors began with the RISC 
(Reduced Instruction Set Computer) machines. The central idea was that by speeding up 
the commonest simple instructions, one could afford to pay a penalty in the unusual 
case and make a large net gain in performance. In contrast CISC (Complex Instruction 
Set Computer) chips can execute many complicated instructions, at the expense of 
slowing down the simplest ones. 
 
In 1980, a group at Berkeley, led by David Patterson and Carlo Sequin, began designing 
RISC chips. They coined the term RISC and named their processor RISC1. Slightly later, 
in 1981, across the San Francisco Bay at Stanford, John Hennessy designed and 
fabricated a somewhat different RISC chip which he called the MIPS (Microprocessor 
without Interlocking Pipeline Stages), a play on the MIPS performance measurement. 
 
MIPS processors are quite powerful, and are the heart of the capabilities of SGI’s 
graphics servers and workstations, which were used to produce the special effects in 
many Hollywood movies (for example the new version of Star Wars, Jurassic Park and 
Toy Story). MIPS processors are also used in the Nintendo 64 game machine. Because of 
its use in high-performance embedded systems, it is estimated that MIPS currently sells 
more microprocessors than Intel. 
 
The organization of memory in MIPS systems is conventional. A program’s address 
space is composed of three parts. At the bottom of the user address space (0x400000) 
is the text segment, which holds the instructions for a program. Above the text segment 
is the data segment, starting at 0x10000000. The stack is a last in, first out data 
structure which is needed to implement procedures, allowing programmers to structure 
software to make it easier to understand and reuse. The program stack resides at the 
top of the address space (0x7fffffff). It grows down, toward the data segment. 
 
MIPS assembly language is a 3-address assembly language. Operands are either 
immediates or in registers. 

There are 32 registers that we commonly use. Each is 32 bits wide. The registers are 
identified by an integer, numbered 0 - 31. 

To reference a register as an operand, use the syntax  $x, where x is the number of the 
register you want.  Examples: $12, $15 

There are some limitations on the use of the 32 32-bit registers. Due to conventions set 
by the simulator, and by the architecture, certain registers are used for special 
purposes. It is wise to avoid the use of those registers, until you understand how to use 
them properly. 

• $0  is 0 (use as needed) 
• $1  is used by the assembler -- do not use it in your programs. 
• $2-7  are used by the simulator -- do not use them unless you know what they are 

for and how they are used.  



 6 

• $26-27  Used to implement the mechanism for calling special procedures that do 
I/O and take care of other error conditions (like overflow) 

• $29  is a stack pointer -- you are automatically allocated a stack (of words), and 
$29 is initialized to contain the address of the empty word at the top of the stack 
at the start of any program. 

 
The MIPS processor also has 16 floating-point registers $f0 . . . $f15 to hold numbers in 
floating point form. 
 
We will be using WinMips64 – an instruction set simulator. 
http://www.computing.dcu.ie/~mike/winmips64.html  


