Instruction Sets

Section 10.2 Types of Operands (pp. 342-344)
Section 10.3 Pentium and PowerPC Data Types (pp. 344-346)
Section 10.4 Types of Operations (pp. 347-358)

We know that the processor operates on data. General categories of data are:

* Addresses

e Numbers

* Characters

* Logical Data

Table 10.2 Pentium Data Types

Data Type Description
General Byte. word (16 bits), doubleword (32 bits). and quadword (64 bits)
locations with arbitrary binary contents.
Integer A signed binary value contained in a byte, word, or doubleword.
using twos complement representation.
Ordinal An unsigned integer contained in a byte, word, or doubleword.

Unpacked binary coded
decimal (BCD)
Packed BCD

Near pointer

Bit field

Byte string

Floating point

A representation of a BCD digit in the range 0 through 9. with one
digit in each byte.
Packed byte representation of two BCD digits: value in the range 0
to 99.
A 32-bit effective address that represents the offset within a
segment. Used for all pointers in a nonsegmented memory and for
references within a segment in a segmented memory.
A contiguous sequence of bits in which the position of each bit is
considered as an independent unit. A bit string can begin at any bit

.o ~ . o .
position of any byte and can contain up to 232 — 1 bits.
A contiguous sequence of bytes. words. or doublewords.

. . ~ 2

containing form zero o R bytes.

See Figure 10.4.

|:| Byle unsigned teger
£ 0
: Woed unsagned inleger

15 0

I Doubleword unsigned mteger
3l 0

I Quadword unsigned mteger

i

s “""“\:I Byle signed iteger
£ 0

Woed sagned integer

15 0
s complement I Doubleword signed integer
al o
10 complemsent I Quadword signed mteger
o3 0
sign bat
Single precision
Il exp I significand 8 ¥
floating poant
3130 22 o
sign bt
Double precision
" exp | sigmificand I f
floating poant
6362 51 0
sign bax integer bat
Jouble extended precisio
" . o " =] | II wble extended precison
B guidi oaling
L o @ - fMoating poant

Figure 10.4 Pentium Numeric Data Formats

* The Pentium does not require that word, double-words, or quad-words be aligned on
any particular boundary; however, if data is accessed across a 32-bit bus, data
transfers take place in 32-bit quantities beginning with an address divisible by 4. If
data is not aligned on such a boundary, then multiple transfers are needed to get the
data.

* The Pentium floating-point numbers conform to the IEEE 754 standard.

* Pentium data is stored using little-endian style which means that the least significant
byte is stored in the lowest address.

Q1: For the C declaration int intval = -10; show what memory would look like if the
variable intVal is located at memory location 1000. Use HEX notation.

The PowerPC is very similar to the Pentium. A few (not all) differences include:
Some instructions require that data be aligned on a 32-bit boundary
The PowerPC can use little-endian or big-endian

Q2: For the C declaration unsigned int intval = 500; show what memory would look
like if the variable intCal is located at memory location 1000. Use HEX notation.

Instruction Sets have the following common instructions:
Table 10.3 Common Instruction Set Operations (page | of 2)

Type Operation Name Description
Move (transfer) Transter word or block from source to destination
Store Transfer word from processor to memory
Load (fetch) Transfer word from memory to processor
Exchange Swap contents of source and destination
Data Transfer
Clear (reset) Transfer word of Os to destination
Set Transfer word of 1s to destination
Push Transfer word from source to top of stack
Pop Transfer word from top of stack to destination
Add Compute sum of two operands
Subtract Compute difference of two operands
Muluply Compute product of two operands
Divide Compute quotient of two operands
Anthmetic
Absolute Replace operand by its absolute value
Negate Change sign of operand
Increment Add 1 to operand
Decrement Subtract 1 from operand
AND Perform logical AND
OR Perform logical OR
NOT (complement) Perform logical NOT
Exclusive-OR Perform logical XOR
Test Test specified condition; set flag(s) based on outcome
S Compare Make logical or arithmetic companson of two or more
operands; set flag(s) based on outcome
Set Control Class of instructions to set controls for protection
Vanables purposes, interrupt handling, tmer control, etc.
Shaft Left (nght) shift operand, introducing constants at end
Rotate Left (nght) shift operand, with wraparound end

Table 10.3 Common Instruction Set Operations (page 2 of 2)

Type Operation Name Description
Jump (branch) Unconditional transfer; load PC wath specified address
Jump Conditional Test specified condition; either load PC with speaified
address or do nothing, based on condition
Jump to Subroutine | Place current program control information in known
location; jump to specilied address
Return Replace contents of PC and other register from known
location
Execute Fetch operand from specified location and execute as
Transfer of Control mstruction; do not modify PC
Skip Increment PC to skip next instruction
Skip Conditional Test specified condition; either skip or do nothing based
on condition
Halt Stop program exccution
Wait (hold) Stop program exccution; test specified condition
repeatedly; resume exccution when condition s satisfied
No operation No operation is performed, bul program exccution 1s
continued
Input (read) Transfer data from specified 1'O port or device to
destination (€.g., main Memory Or processor register)
Output (write) Transfer data from specified source to 'O port or device
Input/Output Start 1O Transfer instructions to 1O processor to initiate 1O
operation
Test 'O Transfer status information from ['O system to specified
destination
Translate Translate values in a section of memory based on a table
_ ' of correspondences
Conversion
Convert Convert the contents of a word from one form to another

(c.g., packed decimal to binary)

