

Greedy Algorithms

5/5/11

5/6/11

- A greedy algorithm always makes the choice that looks best at the moment
- Greedy algorithms do not always lead to optimal solutions, but for many problems they do

Activity-Selection Problem

- You are given a list of programs to run on a single processor
- · Each program has a start time and a finish time

CS380 Algorithm Design and Analysis

- The processor can only run one program at any given time, and there is no preemption
- **Goal:** Select the largest possible set of nonoverlapping (*mutually compatible*) activities.

Other examples: scheduling a lecture hall, and deciding which movies to star in to make as much money as possible © CS380 Algorithm Design and Analysis

Example

5/5/11

5/5/11

S is a set of activities sorted by finishing time
 S = {a₁, a₂, a₃, ..., a_n}:

i	1	2	3	4	5	6	7	8	9
S _i	1	2	4	1	5	8	9	11	13
f _i	3	5	7	8	9	10	11	14	16

Maximum-size mutually compatible set:
 { }

CS380 Algorithm Design and Analysis

Optimal Substructure $S_{ij} = \{a_k \in S : f_i \le s_k < f_k \le s_j\}$ • Activities in S_{ij} are compatible with • All activities that finish by f_i, and • All activities that start no earlier than s_j.

Optimal Substructure (cont.)

- Let a_k∈A_{ij} be some activity in A_{ij}. Then we have two suproblems:

CS380 Algorithm Design and Analysis

- Find mutually compatible activities in S_{ik}
- $_{\circ}\,$ Find mutually compatible activities in S_{kj}

Optimal Substructure (cont.)

- Let: $A_{ik} = A_{ij} \cap S_{ik}$ = activities in $\mathsf{A_{ij}}$ that finish before $\mathsf{a_k}$ starts,
- $A_{kj} = A_{ij} \cap S_{kj}$ = activities in ${\rm A_{ij}}$ that start after ${\rm a_k}$ finishes.
- Then $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$

•
$$\Rightarrow |A_{ij}| = |A_{ik}| + |A_{kj}| + 1$$

5/5/11

5/5/11

5/5/11

 Claim: Optimal solution A_{ij} must include optimal solutions for the two subproblems for S_{ik} and S_{kj}

CS380 Algorithm Design and Analysis

Recursive Solution
• Let
$$c[i,j] = size$$
 of optimal bolution for S_{ij} .
Then:
• $c[i,j] = c[i,k] + c[k,j] + 1$
• But, we don't know which activity a_k to
choose, so we have to try them all:
 $c[i,j] = \begin{cases} 0 & if \quad S_{ij} = \emptyset \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & if \quad S_{ij} \neq \emptyset \end{cases}$

Alternative Approach (Greedy)

- Choose an activity to add to optimal solution before solving subproblems. For activityselection problem, we can get away with considering only the greedy choice: the activity that leaves the resource available for as many other activities as possible.
- Question: Which activity leaves the resource available for the most other activities?

CS380 Algorithm Design and Analysis

Optimal Substructure

5/5/11

• Since we only have one subproblem to solve, we simplify notation:

$S_k = \{a_i \in S : s_i \ge f_k\}$

• By optimal substructure, if a_1 is in an optimal solution, then an optimal solution to the original problem consists of a_1 plus all activities in an optimal solution to S_1 . But need to prove that a_1 is always part of some optimal solution.

CS380 Algorithm Design and Analysis

11

12

Greedy Solution

5/6/11

5/6/11

- So, don't need full power of dynamic programming. Don't need to work bottom-up.
- Instead, can just repeatedly choose the activity that finishes first, keep only the activities that are compatible with that one, and repeat until no activities remain.
- Can work top-down: make a choice, then solve a subproblem. Don't have to solve subproblems before making a choice.

Recursive Greedy Algorithm

5/5/11

5/5/11

- Start and finish times are represented by arrays s and f, where f is assumed to be already sorted in monotonically increasing order.
- To start, add fictitious activity a₀ with f₀ = 0, so that S₀ = S, the entire set of activities.

CS380 Algorithm Design and Analysis

13

14

```
Recursive AlgorithmREC-ACTIVITY-SELECTOR(s, f, k, n)m = k + 1while m \le n and s[m] < f[k]m = m + 1if m \le nreturn \{a_m\} \cup \text{Rec-ACTIVITY-SELECTOR}(s, f, m, n)else return ØInitial callREC-ACTIVITY-SELECTOR(s, f, 0, n).
```

```
Iterative AlgorithmGREEDY-ACTIVITY-SELECTOR (s, f)n = s.lengthA = \{a_1\}k = 1for m = 2 to nif s[m] \ge f[k]A = A \cup \{a_m\}k = mreturn A
```

How Did We Solve?

- Determine the optimal substructure.
- Develop a recursive solution.
- Show that if we make the greedy choice, only one subproblem remains.
- Prove that it's always safe to make the greedy choice.
- Develop a recursive greedy algorithm.

CS380 Algorithm Design and Analysis

Convert it to an iterative algorithm.

Typically

5/5/11

5/5/11

5/5/11

- Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.
- Prove that there's always an optimal solution that makes the greedy choice, so that the greedy choice is always safe.
- Demonstrate optimal substructure by showing that, having made the greedy choice, combining an optimal solution to the remaining subproblem with the greedy choice gives an optimal solution to the original problem.

CS380 Algorithm Design and Analysis

Greedy-Choice Property

 Can assemble a globally optimal solution by making locally optimal (greedy) choices.

Dynamic Programming	Greedy
•Make a choice at each step. •Choice depends on knowing optimal solutions to subproblems. Solve subproblems first. •Solve bottom-up.	•Make a choice at each step. •Make the choice before solving the subproblems. •Solve top-down.

CS380 Algorithm Design and Analysis

18

17

Greedy vs. Dynamic Programming

- 0-1 Knapsack problem
 - o n items.
 - $_{\rm o}\,$ Item i is worth \$i , weighs $w_{\rm i}\, pounds.$
 - $\circ\,$ Find a most valuable subset of items with total weight $\,$ W .
 - Have to either take an item or not take it—can't take part of it.
- Fractional Knapsack problem
- Like the 0-1 knapsack problem, but can take a fraction of an item.
 5/5/11 CS380 Algorithm Design and Analysis 19

Greedy SolutionFRACTIONAL-KNAPSACK (v, w, W)load = 0i = 1while load < W and $i \le n$ if $w_i \le W - load$ take all of item ielse take $(W - load)/w_i$ of item iadd what was taken to loadi = i + 1SOUTH Design and Analysis

0-1 Kna	0-1 Knapsack Problem								
 Is there a greedy solution? 									
Example:									
i	1	2	3						
$\overline{\nu_i}$	60	100	120						
w_i	10	20	30						
v_i/w_i	6	5	4						
W = 50.									
5/5/11	s	21							

