
5/6/11

1

1

Greedy Algorithms

Chapter 16

5/5/11 CS380 Algorithm Design and Analysis

2

Greedy Algorithms

•  A greedy algorithm always makes the choice
that looks best at the moment

•  Greedy algorithms do not always lead to
optimal solutions, but for many problems
they do

5/5/11 CS380 Algorithm Design and Analysis

3

Activity-Selection Problem

•  You are given a list of programs to run on a
single processor

•  Each program has a start time and a finish time

•  The processor can only run one program at any
given time, and there is no preemption

•  Goal: Select the largest possible set of
nonoverlapping (mutually compatible) activities.

5/6/11 CS380 Algorithm Design and Analysis

Other examples: scheduling a lecture hall, and
deciding which movies to star in to make as
much money as possible

5/6/11

2

4

Example

•  S is a set of activities sorted by finishing time
S = {a1, a2, a3, …, an}:

•  Maximum-size mutually compatible set:
{ }

5/5/11 CS380 Algorithm Design and Analysis

i 1 2 3 4 5 6 7 8 9
si 1 2 4 1 5 8 9 11 13
fi 3 5 7 8 9 10 11 14 16

5

Dynamic Programming

•  How would we solve the activity-selection
problem using dynamic programming?

5/5/11 CS380 Algorithm Design and Analysis

6

Optimal Substructure

•  Activities in Sij are compatible with
o  All activities that finish by fi, and

o  All activities that start no earlier than sj.
5/5/11 CS380 Algorithm Design and Analysis

€

Sij = {ak ∈ S : fi ≤ sk < fk ≤ s j}

5/6/11

3

7

Optimal Substructure (cont.)

•  Let Aij be a maximum-size set of mutually
compatible activities in Sij.

•  Let be some activity in Aij. Then we
have two suproblems:
o  Find mutually compatible activities in Sik

o  Find mutually compatible activities in Skj

5/5/11 CS380 Algorithm Design and Analysis

€

ak ∈ Aij

8

Optimal Substructure (cont.)

•  Let: = activities in Aij that
finish before ak starts,

•  = activities in Aij that start
after ak finishes.

•  Then

• 

•  Claim: Optimal solution Aij must include
optimal solutions for the two subproblems for
Sik and Skj

5/5/11 CS380 Algorithm Design and Analysis

€

Aik = Aij ∩ Sik

€

Akj = Aij ∩ Skj

€

Aij = Aik ∪{ak}∪ Akj

€

⇒ Aij = Aik + Akj +1

9

Recursive Solution

•  Let c[i,j] = size of optimal bolution for Sij.
Then:
o  c[i,j] = c[i,k] + c[k,j] + 1

•  But, we don’t know which activity ak to
choose, so we have to try them all:

5/5/11 CS380 Algorithm Design and Analysis

€

c[i, j] =
0 if Sij =∅

max
ak∈Sij

{c[i,k]+ c[k, j]+1} if Sij ≠∅
⎧
⎨
⎪

⎩ ⎪

⎫
⎬
⎪

⎭ ⎪

5/6/11

4

10

Alternative Approach (Greedy)

•  Choose an activity to add to optimal solution
before solving subproblems. For activity-
selection problem, we can get away with
considering only the greedy choice: the
activity that leaves the resource available for
as many other activities as possible.

•  Question: Which activity leaves the resource
available for the most other activities?

5/5/11 CS380 Algorithm Design and Analysis

11

Optimal Substructure

•  Since we only have one subproblem to
solve, we simplify notation:

•  By optimal substructure, if a1 is in an optimal
solution, then an optimal solution to the
original problem consists of a1 plus all
activities in an optimal solution to S1. But
need to prove that a1 is always part of some
optimal solution.

5/6/11 CS380 Algorithm Design and Analysis

12

Greedy Solution

•  So, don’t need full power of dynamic
programming. Don’t need to work bottom-up.

•  Instead, can just repeatedly choose the
activity that finishes first, keep only the
activities that are compatible with that one,
and repeat until no activities remain.

•  Can work top-down: make a choice, then
solve a subproblem. Don’t have to solve
subproblems before making a choice.

5/6/11 CS380 Algorithm Design and Analysis

5/6/11

5

13

Recursive Greedy Algorithm

•  Start and finish times are represented by
arrays s and f , where f is assumed to be
already sorted in monotonically increasing
order.

•  To start, add fictitious activity a0 with f0 = 0,
so that S0 = S, the entire set of activities.

5/5/11 CS380 Algorithm Design and Analysis

14

Recursive Algorithm

5/5/11 CS380 Algorithm Design and Analysis

15

Iterative Algorithm

5/5/11 CS380 Algorithm Design and Analysis

5/6/11

6

16

How Did We Solve?

•  Determine the optimal substructure.

•  Develop a recursive solution.

•  Show that if we make the greedy choice,
only one subproblem remains.

•  Prove that it’s always safe to make the
greedy choice.

•  Develop a recursive greedy algorithm.

•  Convert it to an iterative algorithm.

5/5/11 CS380 Algorithm Design and Analysis

17

Typically

•  Cast the optimization problem as one in which
we make a choice and are left with one
subproblem to solve.

•  Prove that there’s always an optimal solution
that makes the greedy choice, so that the
greedy choice is always safe.

•  Demonstrate optimal substructure by showing
that, having made the greedy choice,
combining an optimal solution to the remaining
subproblem with the greedy choice gives an
optimal solution to the original problem.

5/5/11 CS380 Algorithm Design and Analysis

18

Greedy-Choice Property

•  Can assemble a globally optimal solution by
making locally optimal (greedy) choices.

5/5/11 CS380 Algorithm Design and Analysis

Dynamic Programming Greedy

• Make a choice at each
step.
• Choice depends on
knowing optimal solutions
to subproblems. Solve
subproblems first.
• Solve bottom-up.

• Make a choice at each
step.
• Make the choice before
solving the subproblems.
• Solve top-down.

5/6/11

7

19

Greedy vs. Dynamic Programming

•  0-1 Knapsack problem
o  n items.

o  Item i is worth $i , weighs wi pounds.

o  Find a most valuable subset of items with total
weight W .

o  Have to either take an item or not take it—can’t
take part of it.

•  Fractional Knapsack problem
o  Like the 0-1 knapsack problem, but can take a

fraction of an item.
5/5/11 CS380 Algorithm Design and Analysis

20

Greedy Solution

5/5/11 CS380 Algorithm Design and Analysis

21

0-1 Knapsack Problem

•  Is there a greedy solution?

•  Example:

5/5/11 CS380 Algorithm Design and Analysis

