Optimal Binary Search Trees

Chapter 15
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Balanced BST

» Are balanced binary search trees always the
most efficient search trees?

* Yes! But only if every key is equally probable
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Example

» Dictionary for spell-checking
o What if the root of a balanced tree is
“panentheism”?
- Occurrence in ordinary text is very low
« Most searches will waste at least one comparison

o What if the most common words (“a”, “an”, “the”,
etc.) are the leaves?

 Balanced binary search tree is not always
the most efficient

o Problem is that not all words are equally likely
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Optimal BST

* In optimal BSTs we store the probability of

each node along with its key

* Given sequence K = <k, ky, ... k> of n
distinct keys, sorted (k< k, < ... <k,)

» Want to build a binary search tree from the

keys

* For k;, have probability p, that a search is for
ki

« Want BST with minimum expected search
cost
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Cost of a Search

» Actual cost = # of items examined.

* For key k;, cost = depth(k;) + 1, where

depth(k;) = depth of k; in BST T.

E [search cost in T']

D “(depthy (ki) + 1) - pi

i=1

= ) depthy (k) pi + Y pi
i=1 i=1

= 1+ ZdepthT(k,-) - Di

i=1

5/1/11 CS380 Algorithm Design and Analysis

Example
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Therefore, E [search cost] = 2.15.
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Another Example
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E [search cost] =
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Observations

+ Optimal BST might not have smallest height.

» Optimal BST might not have highest
probability key at root.
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Exhaustive Checking

 Construct each n-node BST.
 For each, put in keys.
» Then compute expected search cost.

* But there are Q(4" / n¥2) different BSTs with
n nodes.
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Solution

» Dynamic Programming

1. Characterize the structure of an optimal
solution

2. Recursively define the value of an optimal
solution

3. Compute the value of an optimal solution
bottom-up

4. Construct an optimal solution from the
computed information
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Step 1: Optimal Solution

+ Consider any subtree of a BST. It contains
keys in a contiguous range k;, ..., k; for some
1<=i<=j<=n.

If T is an optimal BST and
T contains subtree T" with

r keys ki, ..., k;, then T"
must be an optimal BST
for keys ki, ... k.

T
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Step 1: Optimal Solution

* Use optimal substructure to construct an
optimal solution to the problem from optimal
solutions to subproblems:

* Given keys k;, ..., k; (the problem).

» One of them, k., where i <= r <= j, must be
the root.

* Left subtree of k, contains k;, ..., k._4.

* Right subtree of k; contains k.4, ..., k;.
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Step 1: Optimal Solution

o If

o we examine all candidate roots k, fori <= r<=j,
and

o We determine all optimal BSTs containing k;, ...,
k., and containing K4, ..., k;,

* then we’re guaranteed to find an optimal
BST for k;, ..., k;
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Step 2: Recursive Solution

Subproblem domain:

* Find optimal BST for k;. ..., kj,wherei >1,j <n,j >i—1.
¢ When j =i — 1, the tree is empty.

Define e[i, j] = expected search cost of optimal BST for k;, ..., kj.
If j =i —1,theneli, j] = 0.
Ifj =i,
* Select aroot k,, forsomei <r < j.
* Make an optimal BST with k;, . ... ky—y as the left subtree.
* Make an optimal BST with &k, ,q,..., k; as the right subtree.
* Note: when r = i, left subtree is k;, ..., ki—1; when r = j, right subtree is
kjgro.... k;
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Step 2

When a subtree becomes a subtree of a node:

* Depth of every node in subtree goes up by 1.
* Expected search cost increases by

J
w(i,j) = Z i (refer to equation (%)) .
=i
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Step 2

If k, is the root of an optimal BST for &;, . .., kj:
eli,jl=pr+ (e[i,r = 1]+ w(i,r =1)) + (e[r + 1. j] + w(r+1,/)).
Butw(i,j) =w(,r—1)+ p, +wr+1,j).
Therefore, e[, j] = e[i,r — 1] +e[r + 1, j] + w(, j).
This equation assumes that we already know which key is k.
We don’t.
Try all candidates, and pick the best one:

o 0 ifj=i—1,
i J1=0 min felior— 1]+ elr + 1 j] + w(i. j)} ifi<j.

isr<j
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Step 3

OPTIMAL-BST(p.q,n)
lete[l..n+1,0..n],w[l..n 4+ 1,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1
eli,i—1 =0
wli,i —1] =0
for/ = l1ton
fori = 1ton—1+1
Jj=i+l-1
eli.j] = o0
wlilj] = wli.j — 1]+ p,
forr =itoj
t =eli,r—1]+e[r+1,j]+wli/]
ift <eli, j]
eli,jl=1

return e and root
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Example
J
wlo 1 2 3 4 s
1o 25 45 5 7 10
2 0 2 25 45 75
3 0 05 25 55
"y 0 2 5
5 0 3
6 0
J
oot 1 2 3 4 5
112 2
2 2 2 2 4
i3 3405
ks 4 45
/ 5 5
k3
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Step 4

CONSTRUCT-OPTIMAL-BST (root)

r = root[l,n]

print “k”, “is the root”
CONSTRUCT-OPT-SUBTREE(1, r — 1,1, “left”, root)
CONSTRUCT-OPT-SUBTREE (r + 1, n, r, “right”, root)

CONSTRUCT-OPT-SUBTREE (i, j, 1, dir, root)

ifi <j
t = rootli, j)
print “k”; “is” dir “child of k",
CONSTRUCT-OPT-SUBTREE (i, t — 1,1, “left”, root)
CONSTRUCT-OPT-SUBTREE (¢ + 1, j, ¢, “right”, root)
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Another Example

pi 0.1 0.2 0.4 0.3

e root
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