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Optimal Binary Search Trees 

Chapter 15 
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Balanced BST 

•  Are balanced binary search trees always the 
most efficient search trees? 

•  Yes! But only if every key is equally probable 
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Example 

•  Dictionary for spell-checking 
o  What if the root of a balanced tree is 

“panentheism”? 
  Occurrence in ordinary text is very low 
  Most searches will waste at least one comparison 

o  What if the most common words (“a”, “an”, “the”, 
etc.) are the leaves? 

•  Balanced binary search tree is not always 
the most efficient 
o  Problem is that not all words are equally likely 
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Optimal BST 
•  In optimal BSTs we store the probability of 

each node along with its key 

•  Given sequence K = <k1, k2, … ,ki> of n 
distinct keys, sorted (k1< k2 < … < kn) 

•  Want to build a binary search tree from the 
keys 

•  For ki, have probability pi that a search is for 
ki 

•  Want BST with minimum expected search 
cost 

5/1/11 CS380 Algorithm Design and Analysis 

5 

Cost of a Search 

•  Actual cost = # of items examined. 

•  For key ki, cost = depthT(ki) + 1, where 
depthT(ki) = depth of ki in BST T. 

5/1/11 CS380 Algorithm Design and Analysis 

6 

Example 
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Another Example 
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Observations 

•  Optimal BST might not have smallest height.  

•  Optimal BST might not have highest 
probability key at root. 
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Exhaustive Checking 

•  Construct each n-node BST.  

•  For each, put in keys.  

•  Then compute expected search cost.  

•  But there are Ω(4n / n3/2) different BSTs with 
n nodes. 
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Solution 

•  Dynamic Programming 
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1.  Characterize the structure of an optimal 
solution "

2.  Recursively define the value of an optimal 
solution"

3.  Compute the value of an optimal solution 
bottom-up "

4.  Construct an optimal solution from the 
computed information 
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Step 1: Optimal Solution 

•  Consider any subtree of a BST. It contains 
keys in a contiguous range ki, …, kj for some 
1 <= i <= j <= n. 

5/1/11 CS380 Algorithm Design and Analysis 

If T is an optimal BST and 
T contains subtree T` with 
keys ki, …, kj, then T` 
must be an optimal BST 
for keys ki, … kj. 
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Step 1: Optimal Solution 

•  Use optimal substructure to construct an 
optimal solution to the problem from optimal 
solutions to subproblems:   

•  Given keys ki, …, kj (the problem).  

•  One of them, kr, where i <= r <= j, must be 
the root.  

•  Left subtree of kr contains ki, …, kr-1.  

•  Right subtree of kr contains kr+1, …, kj. 
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Step 1: Optimal Solution 

•  If 
o  we examine all candidate roots kr, for i <=  r <= j, 

and  

o  We determine all optimal BSTs containing ki, …, 
kr-1 and containing kr+1, …, kj, 

•  then we’re guaranteed to find an optimal 
BST for ki, …, kj 
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Step 2: Recursive Solution 
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Step 2 
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Step 2 
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Step 3 
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Example 
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Step 4 
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Another Example 

i A B C D 
pi 0.1 0.2 0.4 0.3 
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