
5/1/11

1

1

Optimal Binary Search Trees

Chapter 15

5/1/11 CS380 Algorithm Design and Analysis

2

Balanced BST

•  Are balanced binary search trees always the
most efficient search trees?

•  Yes! But only if every key is equally probable

5/1/11 CS380 Algorithm Design and Analysis

3

Example

•  Dictionary for spell-checking
o  What if the root of a balanced tree is

“panentheism”?
  Occurrence in ordinary text is very low
  Most searches will waste at least one comparison

o  What if the most common words (“a”, “an”, “the”,
etc.) are the leaves?

•  Balanced binary search tree is not always
the most efficient
o  Problem is that not all words are equally likely

5/1/11 CS380 Algorithm Design and Analysis

5/1/11

2

4

Optimal BST
•  In optimal BSTs we store the probability of

each node along with its key

•  Given sequence K = <k1, k2, … ,ki> of n
distinct keys, sorted (k1< k2 < … < kn)

•  Want to build a binary search tree from the
keys

•  For ki, have probability pi that a search is for
ki

•  Want BST with minimum expected search
cost

5/1/11 CS380 Algorithm Design and Analysis

5

Cost of a Search

•  Actual cost = # of items examined.

•  For key ki, cost = depthT(ki) + 1, where
depthT(ki) = depth of ki in BST T.

5/1/11 CS380 Algorithm Design and Analysis

6

Example

5/1/11 CS380 Algorithm Design and Analysis

5/1/11

3

7

Another Example

5/1/11 CS380 Algorithm Design and Analysis

8

Observations

•  Optimal BST might not have smallest height.

•  Optimal BST might not have highest
probability key at root.

5/1/11 CS380 Algorithm Design and Analysis

9

Exhaustive Checking

•  Construct each n-node BST.

•  For each, put in keys.

•  Then compute expected search cost.

•  But there are Ω(4n / n3/2) different BSTs with
n nodes.

5/1/11 CS380 Algorithm Design and Analysis

5/1/11

4

10

Solution

•  Dynamic Programming

5/1/11 CS380 Algorithm Design and Analysis

1.  Characterize the structure of an optimal
solution "

2.  Recursively define the value of an optimal
solution"

3.  Compute the value of an optimal solution
bottom-up "

4.  Construct an optimal solution from the
computed information

11

Step 1: Optimal Solution

•  Consider any subtree of a BST. It contains
keys in a contiguous range ki, …, kj for some
1 <= i <= j <= n.

5/1/11 CS380 Algorithm Design and Analysis

If T is an optimal BST and
T contains subtree T` with
keys ki, …, kj, then T`
must be an optimal BST
for keys ki, … kj.

12

Step 1: Optimal Solution

•  Use optimal substructure to construct an
optimal solution to the problem from optimal
solutions to subproblems:

•  Given keys ki, …, kj (the problem).

•  One of them, kr, where i <= r <= j, must be
the root.

•  Left subtree of kr contains ki, …, kr-1.

•  Right subtree of kr contains kr+1, …, kj.

5/1/11 CS380 Algorithm Design and Analysis

5/1/11

5

13

Step 1: Optimal Solution

•  If
o  we examine all candidate roots kr, for i <= r <= j,

and

o  We determine all optimal BSTs containing ki, …,
kr-1 and containing kr+1, …, kj,

•  then we’re guaranteed to find an optimal
BST for ki, …, kj

5/1/11 CS380 Algorithm Design and Analysis

14

Step 2: Recursive Solution

5/1/11 CS380 Algorithm Design and Analysis

15

Step 2

5/1/11 CS380 Algorithm Design and Analysis

5/1/11

6

16

Step 2

5/1/11 CS380 Algorithm Design and Analysis

17

Step 3

5/1/11 CS380 Algorithm Design and Analysis

18

Example

5/1/11 CS380 Algorithm Design and Analysis

5/1/11

7

19

Step 4

5/1/11 CS380 Algorithm Design and Analysis

20

Another Example

i A B C D
pi 0.1 0.2 0.4 0.3

5/1/11 CS380 Algorithm Design and Analysis

e root

w

