

Longest Common Subsequence

- Problem: Let x₁x₂...x_m and y₁y₂...y_n be two sequences over some alphabet.
 - We assume they are strings of characters
- Find a longest common subsequence (LCS) of x₁x₂...x_m and y₁y₂...y_n

CS380 Algorithm Design and Analysis

Example

4/29/11

4/29/11

- x₁x₂x₃x₄x₅x₆x₇x₈= b a c b f f c b
- $y_1y_2y_3y_4y_5y_6y_7y_8y_9 = d a b e a b f b c$
- Longest Common Subsequence is:

A subsequence is a set of characters that appear in left- to-right order, but not necessarily consecutively.

CS380 Algorithm Design and Analysis

Dynamic Programming

· LCS can be solved using dynamic programming

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute the value of an optimal solution bottom-up

CS380 Algorithm Design and Analysis

4. Construct an optimal solution from the computed information

4/29/11

Step 1

4/28/11

- · Characterizing a longest subsequence
- Optimal substructure: If z = z₁z₂...z_p is a LCS of x₁x₂...x_m and y₁y₂...y_n, then at least one of these most hold
 - $x_m = y_n$, and $z_1 z_2 \dots z_{p-1}$ is an LCS of $x_1 x_2 \dots x_{m-1}$ and $y_1y_2...y_{n-1}$,
 - $x_m != y_n$, and $z_1 z_2 \dots z_p$ is an LCS of $x_1 x_2 \dots x_{m-1}$ and y₁y₂...y_n,
 - $_{o} x_{m}$!= y_{n} , and $z_{1}z_{2}...z_{p}$ is an LCS of $x_{1}x_{2}...x_{m}$ and $y_1y_2...y_{n-1}$. CS380 Algorithm Design and Analysis

Step 3 & 4: Example

4/28/11

- x₁x₂x₃x₄x₅x₆x₇x₈= b a c b f f c b
- $y_1y_2y_3y_4y_5y_6y_7y_8y_9 = d a b e a b f b c$

Example										
	0	1 d	2 a	3 b	4 e	5 a	6 b	7 f	8 b	9 c
0										
1 b										
2 a										
3 c										
4 b										
5 f										
6 f										
7 c										
8 b										
4/28/1	4/28/11 CS380 Algorithm Design and Analysis									8

CS380 Algorithm Design and Analysis

9

CS380 Algorithm Design and Analysis

Another Example

- What is the LCS in:
 - epidemiologist
 - o refrigeration

4/29/11

