

1

o-Notation	(Little-Oh)	
Not to be co	nfused with O-notation (Big-Or	ו)
 Big-Oh 		
 Asymptotic asymptotica 	upper bound may or may not be illy tight	
$o 2n^2 = O(n^2)$	$2n = O(n^2)$	
 Little-Oh 		
 Upper bound 	d that is not asymptotically tight	
o 2n² ≠ o(n²)	$2n = o(n^2)$	
4/24/11	CS380 Algorithm Design and Analysis	5

6

CS380 Algorithm Design and Analysis

4/24/11

Strassen's Algorithm

- Strassen reduced the asymptotic complexity to $\Theta(n^{lg7})$
- 2.80 > lg7 > 2.81

4/24/11

• This is asymptotically better than the simple algorithm

Divide and Conquer

REC-MAT-MULT(*A*, *B*, *n*) let *C* be a new $n \times n$ matrix if n = 1 $c_{11} = a_{11} \cdot b_{11}$ else partition *A*, *B*, and *C* into $n/2 \times n/2$ submatrices $C_{11} = \text{REC-MAT-MULT}(A_{11}, B_{11}, n/2) + \text{REC-MAT-MULT}(A_{12}, B_{21}, n/2)$ $C_{12} = \text{REC-MAT-MULT}(A_{11}, B_{12}, n/2) + \text{REC-MAT-MULT}(A_{12}, B_{22}, n/2)$ $C_{21} = \text{REC-MAT-MULT}(A_{21}, B_{11}, n/2) + \text{REC-MAT-MULT}(A_{22}, B_{21}, n/2)$ $C_{22} = \text{REC-MAT-MULT}(A_{21}, B_{12}, n/2) + \text{REC-MAT-MULT}(A_{22}, B_{22}, n/2)$ return *C*

CS380 Algorithm Design and Analysis

10

12

Analysis

4/24/11

4/24/11

- Dividing takes $\Theta(1)$ time, using index calculations. [Otherwise, $\Theta(n^2)$ time.]

- Conquering makes 8 recursive calls, each multiplying $n/2 \times n/2$ matrices $\Rightarrow 8T(n/2)$.
- Combining takes Θ(n²) time to add n/2 × n/2 matrices four times. [Doesn't even matter asymptotically whether we use index calculations or copy: would be Θ(n²) either way.]

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$$

Analysis

4/24/11

- $T(n) = \Theta(n^3)$
- No better than simple matrix multiply $\boldsymbol{\boldsymbol{\varpi}}$

Strassen's Method

- · Idea: Make the recursion tree less bushy
 - Perform only 7 recursive multiplications of n/2 x n/2 matrices, rather than 8.

CS380 Algorithm Design and Analysis

13

14

15

 Will cost several additions of n/2 x n/2 matrices, but just a constant number more

CS380 Algorithm Design and Analysis

- can still absorb the constant factor for matrix additions into the $\Theta(n^2)$ term.

The Algorithm

4/24/11

4/24/11

- 1. As in the recursive method, partition each of the matrices into four $n/2 \times n/2$ submatrices. Time: $\Theta(1)$.
- Create 10 matrices S₁, S₂,..., S₁₀. Each is n/2 × n/2 and is the sum or difference of two matrices created in previous step. Time: Θ(n²) to create all 10 matrices.
- 3. Recursively compute 7 matrix products P_1, P_2, \ldots, P_7 , each $n/2 \times n/2$.
- Compute n/2 × n/2 submatrices of C by adding and subtracting various combinations of the P_i. Time: Θ(n²).

Analysis $T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 7T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$ $T(n) = \Theta(n^{\lg 7}).$

CS380 Algorithm Design and Analysis 16

4/24/11

Details	
Step 2: Create the	10 matrices
$S_1 = B_{12} - B_2$	2,
$S_2 = A_{11} + A_1$	2,
$S_3 = A_{21} + A_2$	2,
$S_4 = B_{21} - B_1$	1,
$S_5 = A_{11} + A_2$	2,
$S_6 = B_{11} + B_2$	2 ,
$S_7 = A_{12} - A_2$	2,
$S_8 = B_{21} + B_2$	2 ,
$S_9 = A_{11} - A_2$	1,
$S_{10} = B_{11} + B_1$	2 •
Add or subtract $n/2$	$2 \times n/2$ matrices 10 times \Rightarrow time is $\Theta(n/2)$.
4/24/11	CS380 Algorithm Design and Analysis 17

Details	
Step 3: Create the 7 matrices $P_1 = A_{11} \cdot S_1 = A_{11} \cdot B_{12} - A_{11} \cdot B_{22}$, $P_2 = S_2 \cdot B_{22} = A_{11} \cdot B_{22} + A_{12} \cdot B_{22}$, $P_3 = S_3 \cdot B_{11} = A_{21} \cdot B_{11} + A_{22} \cdot B_{11}$, $P_4 = A_{22} \cdot S_4 = A_{22} \cdot B_{21} - A_{22} \cdot B_{11}$, $P_5 = S_5 \cdot S_6 = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22}$, $P_6 = S_7 \cdot S_8 = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22}$, $P_7 = S_9 \cdot S_{10} = A_{11} \cdot B_{11} + A_{11} \cdot B_{12} - A_{21} \cdot B_{11} - A_{21} \cdot B_{12}$. The only multiplications needed are in the middle column; right-hand column jushows the products in terms of the original submatrices of A and B.	st
4/24/11 CS380 Algorithm Design and Analysis 18	

Details Step 4: Add and subtract the P_i to construct submatrices of C:

 $\begin{array}{rcl} C_{11} &=& P_5 + P_4 - P_2 + P_6 \ , \\ C_{12} &=& P_1 + P_2 \ , \\ C_{21} &=& P_3 + P_4 \ , \\ C_{22} &=& P_5 + P_1 - P_3 - P_7 \ . \end{array}$

CS380 Algorithm Design and Analysis

19

20

21

Notes

4/24/11

4/24/11

4/24/11

- Strassen's algorithm was the first to beat Θ (n³) time, but it's not the asymptotically fastest known.
- A method by Coppersmith and Winograd runs in O(n^{2.376}) time.

CS380 Algorithm Design and Analysis

Example Use Strassen's algorithm to compute the matrix product 1 2 | | 5 6 | 3 4 | * | 7 8 |