
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Matrix Multiplication
Input: Two $n \times n($ square $)$ matrices, $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$. Output: $n \times n$ matrix $C=\left(c_{i j}\right)$, where $C=A \cdot B$, i.e., $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$ for $i, j=1,2, \ldots, n$. Need to compute n^{2} entries of C. Each entry is the sum of n values. $\frac{\text { Cs380 Algorithm Design and Analysis }}{}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

O-Notation (Little-Oh) - Not to be confused with O-notation (Big-Oh) - Big-Oh \circ Asymptotic upper bound may or may not be asymptotically tight $\circ 2 n^{2}=O\left(n^{2}\right) \quad 2 n=O\left(n^{2}\right)$ - Little-Oh \circ Upper bound that is not asymptotically tight $\circ 2 n^{2} \neq 0\left(n^{2}\right) \quad 2 n=o\left(n^{2}\right)$ $\frac{542411}{4}$

Matrix Multiplication
- Running time: $\Theta\left(n^{3}\right)$
- Question: is it $\Omega\left(n^{3}\right)$?
o Must compute n^{2} entries
o Each entry is the sum of n terms
- Answer: no! It is $0\left(\mathrm{n}^{3}\right)$
$\frac{6}{424411}$

Strassen's Algorithm
- Strassen reduced the asymptotic complexity
to $\Theta\left(n^{197}\right)$
- $2.80>\lg 7>2.81$
- This is asymptotically better than the simple
algorithm
$\frac{\text { cs380 Aloorithm Dosign and Analysis }}{424411}$

Divide-and-Conquer
- To keep things simple, assume that n is a power of 2
Partition each of A, B, C into four $n / 2 \times n / 2$ matrices: $A=\left(\begin{array}{ll} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right), \quad B=\left(\begin{array}{ll} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array}\right), \quad C=\left(\begin{array}{ll} C_{11} & C_{12} \\ C_{21} & C_{22} \end{array}\right)$
424411

Divide and Conquer			
Rewrite $C=A \cdot B$ as			
$\left(\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right)=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right) \cdot\left(\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right)$,			
giving the four equations			
$C_{11}=A_{11} \cdot B_{11}+A_{12} \cdot B_{21}$,			
$C_{12}=A_{11} \cdot B_{12}+A_{12} \cdot B_{22}$,			
$C_{21}=A_{21} \cdot B_{11}+A_{22} \cdot B_{21}$,			
$C_{22}=A_{21} \cdot B_{12}+A_{22} \cdot B_{22}$.			

Divide and Conquer
```\(\operatorname{Rec}-\operatorname{Mat}-\operatorname{Mult}(A, B, n)\) let \(C\) be a new \(n \times n\) matrix if \(n==1\) \(c_{11}=a_{11} \cdot b_{11}\) else partition \(A, B\), and \(C\) into \(n / 2 \times n / 2\) submatrices \(C_{11}=\operatorname{REC}-\operatorname{MAT}-\operatorname{Mult}\left(A_{11}, B_{11}, n / 2\right)+\operatorname{REC}-\operatorname{MAT}-\operatorname{MULT}\left(A_{12}, B_{21}, n / 2\right)\) \(C_{12}=\operatorname{Rec}-\operatorname{Mat}-\operatorname{Mult}\left(A_{11}, B_{12}, n / 2\right)+\operatorname{Rec}-\operatorname{MAT}-\operatorname{Mult}\left(A_{12}, B_{22}, n / 2\right)\) \(C_{21}=\operatorname{Rec}-\operatorname{Mat}-\operatorname{Mult}\left(A_{21}, B_{11}, n / 2\right)+\operatorname{Rec}-\operatorname{Mat}-\operatorname{Mult}\left(A_{22}, B_{21}, n / 2\right)\) \(C_{22}=\operatorname{Rec}-\operatorname{Mat}-\operatorname{Mult}\left(A_{21}, B_{12}, n / 2\right)+\operatorname{Rec}-\operatorname{MAT}-\operatorname{Mult}\left(A_{22}, B_{22}, n / 2\right)\) return \(C\)```

## How to Partition a Matrix?

- How long would it take to create 12 new $\mathrm{n} / 2$ $\mathrm{x} \mathrm{n} / 2$ matrices?
- $\Theta\left(n^{2}\right)$
- Trick: use index calculations!

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right), \quad C=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)
$$

$\qquad$

4/24/11
CS380 Algorithm Design and Analysis
$\qquad$

Analysis
- $\mathrm{T}(\mathrm{n})=\Theta\left(\mathrm{n}^{3}\right)$
- No better than simple matrix multiply 8

$\qquad$

Strassen's Method
- Idea: Make the recursion tree less bushy
- Perform only 7 recursive multiplications of $\mathrm{n} / 2 \mathrm{x}$
$\mathrm{n} / 2$ matrices, rather than 8 .
- Will cost several additions of $\mathrm{n} / 2 \times \mathrm{n} / 2$ matrices,
but just a constant number more
- can still absorb the constant factor for matrix additions
into the $\Theta\left(\mathrm{n}^{2}\right)$ term.
$\frac{\text { css80 Algorithm Design and Analysis }}{424 / 11}$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

The Algorithm
1. As in the recursive method, partition each of the matrices into four $n / 2 \times n / 2$
submatrices. Time: $\Theta(1)$.
2. Create 10 matrices $S_{1}, S_{2}, \ldots, S_{10}$. Each is $n / 2 \times n / 2$ and is the sum or dif-
ference of two matrices created in previous step. Time: $\Theta\left(n^{2}\right)$ to create all 10
matrices.
3. Recursively compute 7 matrix products $P_{1}, P_{2}, \ldots, P_{7}$, each $n / 2 \times n / 2$.
4. Compute $n / 2 \times n / 2$ submatrices of $C$ by adding and subtracting various com-
binations of the $P_{i}$. Time: $\Theta\left(n^{2}\right)$.
CS3380 Algorithm Design and Analysis
$4 / 24 / 11$


$\qquad$
$\qquad$

## Details

Step 2: Create the 10 matrices
$S_{1}=B_{12}-B_{22}$, $\qquad$
$S_{2}=A_{11}+A_{12}$,
$S_{3}=A_{21}+A_{22}$, $\qquad$
$S_{4}=B_{21}-B_{11}$,
$S_{5}=A_{11}+A_{22}$, $\qquad$
$S_{6}=B_{11}+B_{22}$,
$S_{7}=A_{12}-A_{22}$,
$S_{8}=B_{21}+B_{22}$,
$S_{9}=A_{11}-A_{21}$,
$S_{10}=B_{11}+B_{12}$.
Add or subtract $n / 2 \times n / 2$ matrices 10 times $\Rightarrow$ time is $\Theta(n / 2)$.
4/24/11
CS380 Algorithm Design and Analysis $\qquad$
$\qquad$
$\qquad$
$\qquad$

## Details

## Step 3: Create the 7 matrices

$P_{1}=A_{11} \cdot S_{1}=A_{11} \cdot B_{12}-A_{11} \cdot B_{22}$,
$P_{2}=S_{2} \cdot B_{22}=A_{11} \cdot B_{22}+A_{12} \cdot B_{22}$,
$P_{3}=S_{3} \cdot B_{11}=A_{21} \cdot B_{11}+A_{22} \cdot B_{11}$,
$P_{4}=A_{22} \cdot S_{4}=A_{22} \cdot B_{21}-A_{22} \cdot B_{11}$,
$P_{5}=S_{5} \cdot S_{6}=A_{11} \cdot B_{11}+A_{11} \cdot B_{22}+A_{22} \cdot B_{11}+A_{22} \cdot B_{22}$,
$P_{6}=S_{7} \cdot S_{8}=A_{12} \cdot B_{21}+A_{12} \cdot B_{22}-A_{22} \cdot B_{21}-A_{22} \cdot B_{22}$,
$P_{7}=S_{9} \cdot S_{10}=A_{11} \cdot B_{11}+A_{11} \cdot B_{12}-A_{21} \cdot B_{11}-A_{21} \cdot B_{12}$.
The only multiplications needed are in the middle column; right-hand column just shows the products in terms of the original submatrices of $A$ and $B$. $\qquad$
$\qquad$
$\qquad$

## Details

Step 4: Add and subtract the $P_{i}$ to construct submatrices of $C$ :
$C_{11}=P_{5}+P_{4}-P_{2}+P_{6}$,
$C_{12}=P_{1}+P_{2}$,
$C_{21}=P_{3}+P_{4}$,
$C_{22}=P_{5}+P_{1}-P_{3}-P_{7}$.

4/24/11 CS380 Algorithm Design and Analysis 19
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Notes

- Strassen's algorithm was the first to beat $\Theta$ $\left(n^{3}\right)$ time, but it's not the asymptotically fastest known.
- A method by Coppersmith and Winograd runs in $\mathrm{O}\left(\mathrm{n}^{2.376}\right)$ time.


