
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Shortest Paths
- Finding the shortest path between two nodes
comes up in many applications
\circ Transportation problems
\circ Motion planning
\circ Communication problems
\circ Six degrees of separation!
$\frac{\text { cs380 Alooritm Design and Anayysis }}{48111}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Shortest Paths
- In an unweighted graph, the cost of a path is
just the number of edges on the shortest
paths
- What algorithm have we already covered
that can do this?
48

Shortest Paths

- In a weighted graph, the weight of a path
between two vertices is the sum of the
weights of the edges on a path
- Why will the algorithm on the previous slide
not work here?
$\frac{\text { cs380 Algorithm Design and Anayysis }}{48111}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Shortest Paths Problems

- Input: a directed graph $G=(\mathrm{V}, \mathrm{E})$ and a weight function $w: E \rightarrow R$
- The weight of a path $p=v_{0}, v_{1}, v_{2}, \ldots, v_{k}$ is
\qquad
\qquad
\qquad
\qquad
- The weight of the shortest path from u to v is
\qquad

481811
CS380 Algorithm Design and Analysis
5

Example	
48811	6

Variants
- Single Source Shortest Paths
- Single Destination Shortest Paths
- Single Pair Shortest Path
- All Pairs Shortest Paths
$\frac{78}{48111}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Subpaths
- Subpaths of shortest paths are shortest
paths
- Lemma: If $p=v_{0}, v_{1}, v_{2}, \ldots, v_{j}, \ldots v_{k}$ is a shortest
path from v_{0} to v_{k}, then $p^{\prime}=v_{0}, v_{1}, v_{2}, \ldots, v_{j}$ is a
shortest path from v_{0} to v_{j}
$\frac{8}{48 / 111}$
cs380 Aloorthm Design and Analysis

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Negative Weight Edges
- Fine, as long as no negative-weight cycles
are reachable from the source
$\frac{9}{4811}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Initialization
- All the shortest-paths algorithms start with
InIT-SINGLE-SoURCE (G, s)
for each $v \in G . V$
$\nu . d=\infty$
$\nu . \pi=\mathrm{NIL}$
s. $d=0$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4/8/11
CS380 Algorithm Design and Analysis
14 \qquad

Example	

Single-Source Shortest-Paths
- For all single-source shortest-paths
algorithms we'll look at:
o Start by calling INIT-SINGLE-SOURCE
○ Then relax edges
- The algorithms differ in the order and how
many times they relax each edge
$\frac{\text { cs380 Algorithm Design and Analysis }}{481811}$

Bellman-Ford Algorithm

- Allows negative-weight edges
- Computes $\mathrm{d}[\mathrm{v}]$ and $\pi[\mathrm{v}]$ for all v in V
- Returns true if no negative-weight cycles are reachable from s, false otherwise
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad | | | |
| :--- | :--- | :--- |
| | | |
| 48111 | CS330 Algorithm Desion and Analysis | 17 | \qquad

\qquad
\qquad
\qquad

BELLMAN FORD		
Bellman-Ford ($G, w, s)$		
```Init-Single-Source \((G, s)\) for \(i=1\) to \(\|G . V	-1\) for each edge \((u, v) \in G . E\) \(\operatorname{Relax}(u, v, w)\)```	
for each edge $(u, v) \in G . E$ if $v . d>u . d+w(u, v)$ return FALSE		
return TRUE		
- Time:		
488111	18	

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


Dijkstra's Algorithm
- No negative-weight edges
- Essentially a weighted version of BFS
○ Instead of a FIFO Queue, use a priority queue
$\circ$ Keys are shortest-path weights (d[v])
- Have two sets of vertices
$\circ \mathrm{S}=$ vertices whose final shortest-path weights
are determined
$\circ \mathrm{Q}=$ priority queue $=\mathrm{V}-\mathrm{S}$
$\frac{\text { Cs380 Algorithm Design and Analysis }}{48111}$

## DIJKSTRA

## DIJKStra $(G, w, s)$

Init-Single-Source $(G, s)$
$S=\emptyset$
$Q=G . V \quad / /$ i.e., insert all vertices into $Q$ while $Q \neq \emptyset$
$u=\operatorname{Extract-Min}(Q)$
$S=S \cup\{u\}$
for each vertex $v \in G . \operatorname{Adj}[u]$
$\operatorname{Relax}(u, v, w)$

CS380 Algorithm Design and Analysis
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


$\qquad$
$\qquad$

## Question

- We are running one of these three algorithms on the graph below, where the algorithm has already processed the boldface edges.
$\qquad$
- Prim's for the minimum spanning tree $\qquad$
- Kruskal's for the minimum spanning tree
- Dijkstra's shortest paths from s $\qquad$
$\qquad$
$\qquad$


## Continued

- Which edge would be added next in Prim's $\qquad$ algorithm
- Which edge would be added next in Kruskal's algorithm
- Which vertex would be marked next in Dijkstra's algorithm?

$\qquad$
$\qquad$
$\qquad$
$\qquad$

