Single-Source Shortest Path	
Chapter 24	
4/8/11 CS380 Algorithm Design and Analysis 1	
Chautast Datha	
Shortest Paths	
Finding the shortest path between two nodes	
comes up in many applications	
Transportation problems	
Motion planning	
Communication problems	
Six degrees of separation!	
4/8/11 CS380 Algorithm Design and Analysis 2	
	1
Shortest Paths	
 In an unweighted graph, the cost of a path is 	
just the number of edges on the shortest	
paths	
Mhat algorithm have we already severed	
What algorithm have we already covered that can do this?	
mat can do this?	
4/8/11 CS380 Algorithm Design and Analysis 3]

Shortest Paths	
 In a weighted graph, the weight of a path between two vertices is the sum of the weights of the edges on a path 	
 Why will the algorithm on the previous slide not work here? 	
4/8/11 CS380 Algorithm Design and Analysis 4	
Shortest Paths Problems	1
 Input: a directed graph G = (V, E) and a weight function w: E → R 	
• The weight of a path $p = v_0, v_1, v_2,, v_k$ is	
The weight of the shortest path from u to v is	
4/8/11 CS380 Algorithm Design and Analysis 5	
чго тт	
Example	
	-
4/8/11 CS380 Algorithm Design and Analysis 6	
	_

Variants	
Single Source Shortest Paths	
Single Destination Shortest Paths	
Single Pair Shortest Path	
All Pairs Shortest Paths	
4/8/11 CS380 Algorithm Design and Analysis 7	
Subpaths	1
	-
 Subpaths of shortest paths are shortest paths 	
• Lemma: If $p = v_0, v_1, v_2,, v_j,, v_k$ is a shortest	
path from v_0 to v_k , then $p' = v_0, v_1, v_2,, v_j$ is a shortest path from v_0 to v_j	
	-
4/8/11 CS380 Aborithm Design and Analysis 8	
4/8/11 CS380 Algorithm Design and Analysis 8	_
	_
Negative Weight Edges	
Fine, as long as no negative-weight cycles	
are reachable from the source	
1	1

_		
$C \sim L$	\sim	\sim
C.VI		C :

- Shortest paths can't contain cycles:
 - o Already ruled out negative-weight cycles
 - Positive-weight → we can get a shorter weight by omitting the cycle
 - \circ Zero-weight: no reason to use them \to assume that our solutions will not use them

4/8/11

CS380 Algorithm Design and Analysis

10

Output

• For each vertex v in V:

o
$$d[v] = \delta(s,v)$$

 $_{\circ}$ $\pi[v]$ = predecessor of v on a shortest path from s

4/8/11

CS380 Algorithm Design and Analysis

Initialization

· All the shortest-paths algorithms start with

INIT-SINGLE-SOURCE (G, s)

for each
$$v \in G.V$$

$$v.d = \infty$$

$$\nu.\pi = NIL$$

$$s.d = 0$$

4/8/11

Relaxation

• The process of relaxing an edge (u,v) consists of testing whether we can improve the shortest path to v found so far by going through u and, if so, updating d[v] and π [v]

4/8/11

CS380 Algorithm Design and Analysis

RELAX(u, v, w)

if v.d > u.d + w(u, v) v.d = u.d + w(u, v) $v.\pi = u$

4/8/11

CS380 Algorithm Design and Analysis

Example

4/8/11

Single-Source Shortest-Paths

- For all single-source shortest-paths algorithms we'll look at:
 - Start by calling INIT-SINGLE-SOURCE
 - o Then relax edges
- The algorithms differ in the order and how many times they relax each edge

4/8/11

CS380 Algorithm Design and Analysis

Bellman-Ford Algorithm

- · Allows negative-weight edges
- Computes d[v] and π [v] for all v in V
- Returns true if no negative-weight cycles are reachable from s, false otherwise

4/8/11

CS380 Algorithm Design and Analysis

BELLMAN FORD

BELLMAN-FORD(G, w, s)

INIT-SINGLE-SOURCE (G, s)

for i = 1 to |G.V| - 1

for each edge $(u, v) \in G.E$

Relax(u, v, w)

for each edge $(u, v) \in G.E$

if v.d > u.d + w(u, v)

return FALSE

return TRUE

• Time:

4/8/11

4/8/11 CS380 Algorithm Design and Analysis
--

Single-Source Shortest-Paths

• In a DAG!

 $\mathsf{DAG}\text{-}\mathsf{Shortest}\text{-}\mathsf{Paths}\left(G,w,s\right)$

topologically sort the vertices INIT-SINGLE-SOURCE (G, s)

for each vertex u, taken in topologically sorted order for each vertex $v \in G.Adj[u]$ RELAX(u, v, w)

4/8/11

CS380 Algorithm Design and Analysis

Example 6 7 1 2 4/8/11 CS380 Algorithm Design and Analysis 21

Dijkstra's Algorithm

- No negative-weight edges
- Essentially a weighted version of BFS
 - o Instead of a FIFO Queue, use a priority queue
 - Keys are shortest-path weights (d[v])
- · Have two sets of vertices
 - S = vertices whose final shortest-path weights are determined
 - o Q = priority queue = V S

4/8/11

CS380 Algorithm Design and Analysis

22

DIJKSTRA

DIJKSTRA(G, w, s)

INIT-SINGLE-SOURCE (G, s)

 $S = \emptyset$

Q = G.V // i.e., insert all vertices into Q

while $Q \neq \emptyset$

u = EXTRACT-MIN(Q)

 $S = S \cup \{u\}$

for each vertex $v \in G.Adj[u]$

Relax(u, v, w)

4/8/11

CS380 Algorithm Design and Analysis

Example

4/8/11

	_
Your	Turn
. oa.	

 What is the single-source shortest-path tree starting at a?

25

Question

- We are running one of these three algorithms on the graph below, where the algorithm has already processed the boldface edges.
 - o Prim's for the minimum spanning tree
 - o Kruskal's for the minimum spanning tree
 - o Dijkstra's shortest paths from s

26

Continued

- Which edge would be added next in Prim's algorithm
- Which edge would be added next in Kruskal's algorithm
- Which vertex would be marked next in Dijkstra's algorithm?

27