
4/4/11

1

1

Elementary Graph Algorithms

Chapter 22

4/4/11 CS380 Algorithm Design and Analysis

2

Topological Sort

•  A topological sort is performed on a directed
acyclic graph

•  A topological sort is a linear ordering of all
vertices of a graph such that if G contains an
edge (u, v), then u appears before v in the
ordering

4/4/11 CS380 Algorithm Design and Analysis

3

Topological Sort

•  A topological sort of a graph can be viewed
as an ordering of its vertices along a
horizontal line so that all directed edges go
from left to right

•  Directed Acyclic Graphs (DAG) are used in
many applications to indicate precedences
among events

•  What is a DAG?

4/4/11 CS380 Algorithm Design and Analysis

4/4/11

2

4

Topological Sort

•  Good for modeling processes and structures
that have a partial order:
o  a > b and b > c implies that a > c

o  But may have a and b such that neither a > b
nor b > c

4/4/11 CS380 Algorithm Design and Analysis

5

TOPOLOGICAL-SORT(G)

•  Call DFS(G) to compute finishing times f[v]
for each vertex v

•  As each vertex is finished, insert it onto the
front of a linked list

•  Return the linked list of vertices

4/4/11 CS380 Algorithm Design and Analysis

6

Example

4/4/11 CS380 Algorithm Design and Analysis

socks shorts

hose

pants

skates

Leg
pads

T-shirt

Chest pad

sweater

mask

Catch glove

blocker

Batting
glove

4/4/11

3

7

Topological Sort

•  Running time for topological sort is:

4/4/11 CS380 Algorithm Design and Analysis

8

Strongly Connected Components

•  Given a directed graph G = (V, E)

•  A strongly connected component (SCC) of G
is a maximal set of vertices

•  Such that for all both u -> v and v->u

4/4/11 CS380 Algorithm Design and Analysis

9

Example

•  Identify the strongly connected components

4/4/11 CS380 Algorithm Design and Analysis

a

f

b

g

c

h

d e

i j

4/4/11

4

10

Transpose

•  Algorithm uses GT = transpose of G
o  GT

•  How long does it take to create GT if using
adjacency lists?

•  Observation: G and GT have the same
SCC’s.

4/4/11 CS380 Algorithm Design and Analysis

11

SCC(G)

•  Call DFS(G) to compute finishing times f[u]
for all u

•  Compute GT

•  Call DFS(GT), but in the main loop, consider
vertices in order of decreasing f[u] (as
computed in first DFS)

•  Output the vertices in each tree of the depth-
first forest formed in second DFS as a
separate SCC

4/4/11 CS380 Algorithm Design and Analysis

12

Example

4/4/11 CS380 Algorithm Design and Analysis

a

f

b

g

c

h

d e

i j

