
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Topological Sort \qquad

- A topological sort is performed on a directed acyclic graph
- A topological sort is a linear ordering of all vertices of a graph such that if G contains an edge (u, v), then u appears before v in the
\qquad
\qquad ordering

Topological Sort
- A topological sort of a graph can be viewed
as an ordering of its vertices along a
horizontal line so that all directed edges go
from left to right
- Directed Acyclic Graphs (DAG) are used in
many applications to indicate precedences
among events
- What is a DAG?
$\frac{\text { css30 Allooithm Design nand Analysis }}{44411}$

TOPOLOGICAL-SORT(G)
- Call DFS(G) to compute finishing times $\mathrm{f}[\mathrm{v}]$
for each vertex v
- As each vertex is finished, insert it onto the
front of a linked list
- Return the linked list of vertices
$\frac{5}{44411}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Strongly Connected Components

- Given a directed graph $G=(V, E)$
- A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$
- Such that for all $u, v \in C$ both $u->v$ and $\mathrm{v}->\mathrm{u}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Identify the strongly connected components

Transpose
- Algorithm uses $\mathrm{G}^{\top}=$ transpose of G
o G^{\top}
- How long does it take to create G^{\top} if using
adjacency lists?
- Observation: G and G^{\top} have the same
SCC's.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SCC(G)
- Call DFS(G) to compute finishing times $f[u]$
for all u
- Compute G^{\top}
- Call DFS(G^{\top}), but in the main loop, consider
vertices in order of decreasing f[u] (as
computed in first DFS)
- Output the vertices in each tree of the depth-
first forest formed in second DFS as a
separate SCC
$\frac{44411}{}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

