Dynamic Programming

Matrix-Chain Multiplication
Chapter 15
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Matrix Multiplication - Review

« We can multiply two matrices A and B only if
they are compatible

o Number of columns in A is the same as number
of rows in B

HIEE
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Matrix-Multiply(A, B)

* What is the running time if Aisap X q
matrix and B is a g X r matrix?
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Matrix-Chain Multiplication

» Suppose we have a sequence or chain A,,
A,, ..., A, of n matrices to be multiplied

o Thatis, we want to compute the product
AA, A,

* There are many possible ways
(parenthesizations) to compute the product

3/27/11 CS380 Algorithm Design and Analysis 4

3/27/11

Example

» Example: consider the chain A;, A,, A;, A,
of 4 matrices

o Letus compute the product A;A,AA,

* There are 5 possible ways:
1. (A(Ax(AsA)))
2. (A((A2A3)A))
3. ((A1A2)(AsA,))
4. ((A1(AA9))A,)
5 ((A1A)A3)A,)
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Example

* A,;is 10 x 100

A,is 100 x 5

A;is 5 x50

* A, is50x 1

* AJALAZA, is a 10 by 1 matrix

- Let Aj= AL.A
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Example

* (A1(A2(AsA4)))
o Asa=AsA«, 250 mults, result is 5 by 1
o A2s= A2Ass, 500 mults, result is 100 by 1
o Aia= A1A22, 1000 mults, result is 10 by 1
o Total is 1750
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Example

* ((A1A2)(AsA4))
o Aiz=A1A2, 5000 mults, result is 10 by 5
o Asa=AsA«, 250 mults, result is 5 by 1
o Ats= Ar2Ass) , 50 mults, result is 10 by 1
o Total is 5300
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Example

* (((A1A2)As)As4)
o A= AiA2, 5000 mults, result is 10 by 5
o Aiz= ArzAs, 2500 mults, result is 10 by 50
o Ais= A1sAs, 500 mults, results is 10 by 1
o Total is 8000
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Example

* ((A1(A2A3))A4)
o Azs= A2As, 25000 mults, result is 100 by 50
o Aiz= AiAzs, 50000 mults, result is 10 by 50
o Aia= A1sAs, 500 mults, results is 10 by
o Total is 75500
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Example

* (A1((A2A3)A4))
o Azs= A2As, 25000 mults, result is 100 by 50
o Aza= AzsAs, 5000 mults, result is 100 by 1
o Ats= A1A2s, 1000 mults, result is 10 by 1
o Total is 31000
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Conclusion

« Order of the multiplications makes a
difference

* How do we determine the order of
multiplications that has the lowest cost?

* Note: We are not actually multiplying!
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Parenthesization

A product of matrices is fully parenthesized if
it is either
o a single matrix, or
o a product of two fully parenthesized matrices,

surrounded by parentheses

» Each parenthesization defines a set of n-1
matrix multiplications. We just need to pick
the parenthesization that corresponds to the
best ordering.

« How many parenthesizations are there?
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Parenthesization

* Let P(n) be the number of ways to
parenthesize n matrices.
1 ifn=1
PO = S PWPMn-k) if n=2

+ Solution to this recurrence is Q(2")

» Checking all possible parenthesizations is
not efficient!
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Dynamic Programming

1. Characterize the structure of an optimal
solution

2. Recursively define the value of an optimal
solution

3. Compute the value of an optimal solution
bottom-up

4. Construct an optimal solution from the
computed information
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1. Structure

« If the outermost parenthesizations is
((AIAZ"'A:')(A' ...An))

i+1
» Then the optimal solution consists of solving
Ali and Ai+1,n
optimally and then combining the solutions
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2. Recursive Solution

* Let A, have the dimension: p.; X p;

* Let m[i,j] be the cost of computing A;

* If the final multiplication for A; is

Aij =A,A
then

mli,jl = mli,k]+mlk +1,j1+ p, \p,p,

k+1,j
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2. Recursive Solution

+ We don’t know k a priori, so we take the
minimum
M= min{mli K+ mik+1.j1+ ppep,} i i<

isk< j

« Direct recursion on this does not work
o It takes exponential time!
o No better than brute force method
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Step 3: Compute Optimal Cost

Matrix-Chain-Order(p)

1 n« lengthlp| — 1
2 fori—1ton
3 do mli, i) «— 0
4 forl—2ton > [ is the chain length.
5 dofori—1lton—1I+1
6 doje—i+l—1
7 mi, j] « oo
8 fork—itoj—1
9 do g «— mfi, k] +mlk + 1, j] + pi_1pip;
10 if ¢ <mli, j]
11 then m[i,j] < ¢
12 s, j] — k

13 return m and s
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Example
* Letn=6
 Let p be:
[matrix [ A, [A, A [A. [A [A |
[Dimension | [30x35 [35x15] 15x5 | 5x10 [ 10x20 | 20x25 |

» What are the contents of m and s?

3/27/11 CS380 Algorithm Design and Analysis 20

Arrays m and s
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Cont.

* What is the optimal cost for multiplying the
six matrices?

* Use the table m to calculate m[2,5]
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Step 4: Constructing Solution

» So, we know the lowest cost, but what is the
optimal parenthesization?
PRINT-OPTIMAL-PARENS (s, i, j)
if i =3
then print “A”;
else print “ (%
PRINT-OPTIMAL-PARENS (s, i, s[i, jl])
PRINT-OPTIMAL-PARENS (s, s[i, j]+1, j)

print ")
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