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Dynamic Programming 

Chapter 15 
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Dynamic Programming 

•  We know that we can use the divide-and-
conquer technique to obtain efficient 
algorithms 

•  Sometimes, the direct use of divide-and-
conquer produces really bad and inefficient 
algorithms 
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Fibonacci Numbers 

•  Fibonacci numbers are defined by the 
following recurrence: 
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Fn =

Fn−1 + Fn−2 if n ≥ 2
1 if n =1
0 if n = 0
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⎭ 
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n 0 1 2 3 4 5 6 7 8 9 10 … 

Fn 1 1 2 3 5 8 13 21 34 55 89 … 
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A Recursive Algorithm 

Algorithm Fibonacci(n)!

if n <= 1, then:!

 return 1!

else:!

 return Fibonacci(n-1) + Fibonacci(n-2)!

•  What is the running time? 
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Finonacci 

•  Why is it so slow? 

•  Can we do better? 

•  Recursion is not always best! 
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Dynamic Programming 

•  Not really dynamic 

•  Not really programming 

•  Name is used for historical reasons 

•  It comes from the term “mathematical 
programming”, which is a synonym for 
optimization. 
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Dynamic Programming 

•  Dynamic programming improves inefficient 
recursive algorithms 

•  How? 
o  Solves each subsubproblem once and saves the 

answer in a table 

•  Used to solve optimization problems 
o  Many possible solutions 

o  Wish to find a solution with the optimal value 
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Four Steps for Dynamic Programming 

•  Characterize the structure of an optimal 
solution 

•  Recursively define the value of an optimal 
solution 

•  Compute the value of an optimal solution, 
typically in a bottom-up fashion 

•  Construct an optimal solution from computed 
information 
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Rod Cutting 

•  A company buys long steel rods and cuts 
them into shorter rods, which it then sells 

•  Each cut is free 

•  The management wants to know the best 
way to cut up the rods to make the most 
money 
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Example 

•  Can cut up a rod in 2n-1 different ways 
o  You can choose to cut or not cut after the first 

n-1 inches 

•  What are the possible ways of cutting a rod 
of length 4 (n = 4)? 

•  What is the best way? 
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Initial Optimal Revenues 

•  Optimal revenues ri, by inspection: 
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Optimal Revenues 

•  We can determine the optimal revenue rn by 
taking the maximum of: 
o  pn: price by not cutting 

o  r1 + rn-1: maximum revenue for a rod of length 1 
and a rod of length n-1 

o  r2 + rn-2: maximum revenue for a rod of length 2 
and a rod of length n-2 

o  … 

o  rn-1 + r1 

•  rn = max(pn, r1 + rn-1, r2 + rn-2, …, rn-1 + r1) 
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Optimal Substructure 

•  To solve a problem of size n, solve problem 
of smaller sizes. After making a cut, we have 
two subproblems. The optimal solution to the 
original problem incorporates optimal 
solutions to the subproblems. 

•  Example 
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Simplifying 

•  Every optimal solution has a leftmost cut. In 
other words, there’s some cut that gives a first 
piece of length i cut off the left end, and a 
remaining piece of length n - i on the right 
o  Need to divide only the remainder, not the first 

piece. 
o  Leaves only one subproblem to solve, rather than 

two subproblems. 
o  Say that the solution with no cuts has first piece size 

i = n with revenue pn, and remainder size 0 with 
revenue r0 = 0. 
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rn =max
1≤ i≤n

(pi + rn− i)
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Recursive Top-Down Solution 

•  Is it correct? 

•  Is it efficient? 
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Dynamic-Programming Solution 

•  Don’t solve same subproblems repeatedly 

•  “Store, don’t recompute” 
o  Trade-off 

•  Can turn an exponential-time solution to a 
polynomial-time solution 

•  Two approaches: 
o  Top-down with memoization 

o  Bottom up 
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Top-Down with Memoization 

•  Solve recursively, but store each result in a 
table 

•  To find the solution to a subproblem, first 
look in the table. 
o  If there, use it 

o  Otherwise, compute it and store in table 
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Memoized Cut-Rod 
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Bottom-Up 

•  Sort the subproblems by size and solve the 
smaller ones first 
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Running Time 

•  What is the running time of the previous two 
algorithms? 
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Subproblem graphs 

•  Directed Graph: 
o  One vertex for each distinct subproblem 

o  Has a directed edge (x, y) if computing an 
optimal solution to subproblem x directly 
requires knowing an optimal solution to 
subproblem y 
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Subproblem Graph for Rod-Cutting 

•  When n = 4: 
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Reconstructing a Solution 

•  We have only computed the value of an 
optimal solution 
o  i.e. When n = 4, rn = 10 

•  We still don’t know how to cut up the rod! 
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Rod-Cutting 
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Example 

•  PRINT-CUT-ROD-SOLUTION(p, 8) 
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Problem 

•  Do exercise 15.1-5 on page 370 
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Summary 

•  Divide and Conquer is best used when there 
are no overlapping subproblems 

•  Otherwise, use dynamic programming! 
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