Dynamic Programming

Chapter 15

3/13/11

CS380 Algorithm Design and Analysis

Dynamic Programming

- We know that we can use the divide-andconquer technique to obtain efficient algorithms
- Sometimes, the direct use of divide-andconquer produces really bad and inefficient algorithms

3/13/11

CS380 Algorithm Design and Analysis

Fibonacci Numbers

• Fibonacci numbers are defined by the following recurrence:

$$F_{n} = \begin{cases} F_{n-1} + F_{n-2} & \text{if } n \ge 2 \\ 1 & \text{if } n = 1 \\ 0 & \text{if } n = 0 \end{cases}$$

l	n	0	1	2	3	4	5	6	7	8	9	10	
ı	F _n	1	1	2	3	5	8	13	21	34	55	89	

3/13/11

	_
A Recursive Algorithm	
Algorithm Fibonacci(n)	
if n <= 1, then:	-
return 1	
else:	
return Fibonacci(n-1) + Fibonacci(n-2)	_
What is the running time?	
3/13/11 CS380 Algorithm Design and Analysis 4	
	7
Finonacci	
• Why is it so slow?	
Can we do better?	
Recursion is not always best!	
<u>, </u>	
3/13/11 CS380 Algorithm Design and Analysis 5	
Dynamic Programming]
Not really dynamic	
Not really programming	
Name is used for historical reasons	
 It comes from the term "mathematical programming", which is a synonym for 	
optimization.	
	1

Dynamic Programming

- Dynamic programming improves inefficient recursive algorithms
- How?
 - Solves each subsubproblem once and saves the answer in a table
- · Used to solve optimization problems
 - o Many possible solutions
 - o Wish to find a solution with the optimal value

3/13/11

CS380 Algorithm Design and Analysis

Four Steps for Dynamic Programming

- Characterize the structure of an optimal solution
- Recursively define the value of an optimal solution
- Compute the value of an optimal solution, typically in a bottom-up fashion
- Construct an optimal solution from computed information

3/13/11

CS380 Algorithm Design and Analysis

Rod Cutting

- A company buys long steel rods and cuts them into shorter rods, which it then sells
- · Each cut is free
- The management wants to know the best way to cut up the rods to make the most money

length i	1	2	3	4	5	6	7	8
price p_i	1	5	8	9	10	17	17	20

3/13/11

Example

- Can cut up a rod in 2ⁿ⁻¹ different ways
 - You can choose to cut or not cut after the first n-1 inches
- What are the possible ways of cutting a rod of length 4 (n = 4)?
- · What is the best way?

3/13/11

CS380 Algorithm Design and Analysis

Initial Optimal Revenues

Optimal revenues r_i, by inspection:

i	r_i	optimal solution
1	1	1 (no cuts)
2	5	2 (no cuts)
3	8	3 (no cuts)
4	10	2 + 2
5	13	2 + 3
6	17	6 (no cuts)
7	18	1 + 6 or $2 + 2 + 3$
8	22	2 + 6

3/13/11

CS380 Algorithm Design and Analysis

Optimal Revenues

- We can determine the optimal revenue r_n by taking the maximum of:
 - o p_n: price by not cutting
 - $\circ \ r_{\rm 1} + r_{\rm n-1}$: maximum revenue for a rod of length 1 and a rod of length n-1
 - $\circ~r_2$ + $r_{\text{n-2}}\!\!:$ maximum revenue for a rod of length 2 and a rod of length n-2

0 ...

o r_{n-1} + r₁

• rn = max(p_n , $r_1 + r_{n-1}$, $r_2 + r_{n-2}$, ..., $r_{n-1} + r_1$)

3/13/11

Optimal Substructure

- To solve a problem of size n, solve problem of smaller sizes. After making a cut, we have two subproblems. The optimal solution to the original problem incorporates optimal solutions to the subproblems.
- Example

3/13/11

CS380 Algorithm Design and Analysis

13

Simplifying

- Every optimal solution has a leftmost cut. In other words, there's some cut that gives a first piece of length i cut off the left end, and a remaining piece of length n - i on the right
 - Need to divide only the remainder, not the first piece.
 - Leaves only one subproblem to solve, rather than two subproblems.
 - o Say that the solution with no cuts has first piece size i = n with revenue p_n , and remainder size 0 with revenue $r_0 = 0$.

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

" 1≤*i*≤*i* 3/13/11

CS380 Algorithm Design and Analysis

Recursive Top-Down Solution

```
CUT-ROD(p,n)

if n = 0

return 0

q = -\infty

for i = 1 to n

q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))

return q
```

- · Is it correct?
- · Is it efficient?

3/13/11

_				

Dynamic-Programming Solution

- Don't solve same subproblems repeatedly
- "Store, don't recompute"
 - o Trade-off
- Can turn an exponential-time solution to a polynomial-time solution
- · Two approaches:
 - o Top-down with memoization
 - o Bottom up

3/13/11

CS380 Algorithm Design and Analysis

Top-Down with Memoization

- Solve recursively, but store each result in a table
- To find the solution to a subproblem, first look in the table.
 - o If there, use it
 - o Otherwise, compute it and store in table

3/13/11

3/13/11

CS380 Algorithm Design and Analysis

Memoized Cut-Rod

```
MEMOIZED-CUT-ROD(p,n)
let r[0..n] be a new array
for i=0 to n
r[i]=-\infty
return MEMOIZED-CUT-ROD-AUX(p,n,r)

MEMOIZED-CUT-ROD-AUX(p,n,r)
if r[n] \geq 0
return r[n]
if n=0
q=0
else q=-\infty
for i=1 to n
q=\max(q,p[i]+\text{MEMOIZED-CUT-ROD-AUX}(p,n-i,r))
r[n]=q
return q
```

CS380 Algorithm Design and Analysis

6

Bottom-Up

Sort the subproblems by size and solve the smaller ones first

```
BOTTOM-UP-CUT-ROD(p, n)

let r[0..n] be a new array

r[0] = 0

for j = 1 to n

q = -\infty

for i = 1 to j

q = \max(q, p[i] + r[j - i])

r[j] = q

return r[n]
```

3/13/11

CS380 Algorithm Design and Analysis

Running Time

What is the running time of the previous two algorithms?

3/13/11

CS380 Algorithm Design and Analysis

Subproblem graphs

- · Directed Graph:
 - o One vertex for each distinct subproblem
 - Has a directed edge (x, y) if computing an optimal solution to subproblem x directly requires knowing an optimal solution to subproblem y

3/13/11

Subproblem Graph for Rod-Cutting

• When n = 4:

3/13/11

CS380 Algorithm Design and Analysis

Reconstructing a Solution

- We have only computed the value of an optimal solution
 - \circ i.e. When n = 4, r_n = 10
- We still don't know how to cut up the rod!

3/13/11

3/13/11

CS380 Algorithm Design and Analysis

Rod-Cutting

```
EXTENDED-BOTTOM-UP-CUT-ROD(p,n)
let r[0..n] and s[0..n] be new arrays
r[0] = 0
for j = 1 to n
q = -\infty
for i = 1 to j
if q < p[i] + r[j - i]
q = p[i] + r[j - i]
s[j] = i
r[j] = q
return r and s
Saves the first cut made in an optimal solution for a problem of size i in s[i].
To print out the cuts made in an optimal solution:

PRINT-CUT-ROD-SOLUTION(p,n)
(r,s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p,n)
while n > 0
print <math>s[n]
n = n - s[n]
```

• PRINT-CUT-ROD-SOLUTION(p, 8)

					4				
r[i] $s[i]$	0	1	5	8	10	13	17	18	22
s[i]	0	1	2	3	2	2	6	1	2

3/13/11

CS380 Algorithm Design and Analysis

Problem

• Do exercise 15.1-5 on page 370

3/13/11

CS380 Algorithm Design and Analysis

Summary

- Divide and Conquer is best used when there are no overlapping subproblems
- Otherwise, use dynamic programming!

3/13/11