Dynamic Programming

Chapter 15

3/13/11

3/13/11 CS380 Algorithm Design and Analysis 1

Dynamic Programming

* We know that we can use the divide-and-
conquer technique to obtain efficient
algorithms

« Sometimes, the direct use of divide-and-
conquer produces really bad and inefficient
algorithms

31311 CS380 Algorithm Design and Analysis 2

Fibonacci Numbers

« Fibonacci numbers are defined by the
following recurrence:

F,_+F,_, ifnz2
F, =11 if n=1
0 if n=0

n (0 |1 |2 [3 [4 |5 (6 (7 |8 |9 [10]...
F.[1 |1 |2 |3 |5 |8 [13|21[34|55|89]..

3M13/11 (CS380 Algorithm Design and Analysis 3

A Recursive Algorithm

Algorithm Fibonacci(n)
if n <= 1, then:
return 1

else:

return Fibonacci(n-1) + Fibonacci(n-2)

* What is the running time?

3/13/11 CS380 Algorithm Design and Analysis 4

3/13/11

Finonacci

* Why is it so slow?

« Can we do better?

» Recursion is not always best!

3/13/11 CS380 Algorithm Design and Analysis 5

Dynamic Programming

* Not really dynamic
* Not really programming
« Name is used for historical reasons

* It comes from the term “mathematical
programming”, which is a synonym for
optimization.

3M13/11 (CS380 Algorithm Design and Analysis 6

Dynamic Programming

» Dynamic programming improves inefficient
recursive algorithms
* How?

o Solves each subsubproblem once and saves the
answer in a table

» Used to solve optimization problems
o Many possible solutions
o Wish to find a solution with the optimal value

3/13/11 CS380 Algorithm Design and Analysis 7

3/13/11

Four Steps for Dynamic Programming

 Characterize the structure of an optimal
solution

 Recursively define the value of an optimal
solution

» Compute the value of an optimal solution,
typically in a bottom-up fashion

 Construct an optimal solution from computed
information

31311 CS380 Algorithm Design and Analysis 8

Rod Cutting

* A company buys long steel rods and cuts
them into shorter rods, which it then sells

- Each cut is free

» The management wants to know the best
way to cut up the rods to make the most
money

lengthi |1 2 3 4 5 6 7 8
pricep; |1 5 8 9 10 17 17 20

3M13/11 (CS380 Algorithm Design and Analysis 9

Example

« Can cut up a rod in 2" different ways

o You can choose to cut or not cut after the first
n-1 inches

* What are the possible ways of cutting a rod
of length 4 (n = 4)?

* What is the best way?

3/13/11 CS380 Algorithm Design and Analysis 10

3/13/11

Initial Optimal Revenues

+ Optimal revenues r;, by inspection:

i T optimal solution
1 1 1 (no cuts)
2 5 2 (no cuts)
3 8 3 (no cuts)
4 10 242
5 13 2+3
6 17 6 (no cuts)
7 18 1+60r2+2+3
8 22 2+6
3/13/11 CS380 Algorithm Design and Analysis 1

Optimal Revenues

* We can determine the optimal revenue r, by
taking the maximum of:
o p,: price by not cutting
o ry + r,4: maximum revenue for a rod of length 1
and a rod of length n-1
o I, + I,: maximum revenue for a rod of length 2
and a rod of length n-2

0O ...

or.4+r

n-1 1
© M =max(pPp, M+ My Ty + Ty ey Fpg + 1y

3M13/11 (CS380 Algorithm Design and Analysis 12

Optimal Substructure

 To solve a problem of size n, solve problem
of smaller sizes. After making a cut, we have
two subproblems. The optimal solution to the
original problem incorporates optimal
solutions to the subproblems.

* Example

3/13/11 CS380 Algorithm Design and Analysis 13

3/13/11

Simplifying

» Every optimal solution has a leftmost cut. In
other words, there’s some cut that gives a first
piece of length i cut off the left end, and a
remaining piece of length n - i on the right

o Need to divide only the remainder, not the first
piece.

o Leaves only one subproblem to solve, rather than
two subproblems.

o Say that the solution with no cuts has first piece size
i = n with revenue p,, and remainder size 0 with
revenue ry = 0.

r, = Hl.ax(pi + rn—i)
Isisn
3/13/11 CS380 Algorithm Design and Analysis 14

Recursive Top-Down Solution

CuTt-RoD(p,n)
ifn ==
return 0
q = —00
fori = 1ton
q = max(q, p[i] + CUT-ROD(p,n —i))
return q

* |s it correct?

« |s it efficient?

3M13/11 (CS380 Algorithm Design and Analysis 15

Dynamic-Programming Solution

* Don’t solve same subproblems repeatedly
* “Store, don’t recompute”
o Trade-off

« Can turn an exponential-time solution to a
polynomial-time solution

» Two approaches:
o Top-down with memoization

o Bottom up

3/13/11

3/13/11 CS380 Algorithm Design and Analysis 16

Top-Down with Memoization

 Solve recursively, but store each result in a
table

+ To find the solution to a subproblem, first
look in the table.
o If there, use it

o Otherwise, compute it and store in table

3/13/11 CS380 Algorithm Design and Analysis 17

Memoized Cut-Rod

MEMOIZED-CUT-ROD (p, n)
let r[0. . n] be a new array
fori =Oton
rli] = —o0
return MEMOIZED-CUT-ROD-AUX (p, 1, r)

MEMOIZED-CUT-ROD-AUX (p, n, 1)
ifrjn] >0

return r[n]
ifn==

qg=0
elseg = —oc0

fori = 1ton

q = max(g, p[i] + MEMOIZED-CUT-ROD-AUX (p,n —i,r))

rnl = ¢
return g

3M13/11 (CS380 Algorithm Design and Analysis 18

Bottom-Up

+ Sort the subproblems by size and solve the
smaller ones first

BortoM-UP-CUT-ROD(p, 1)
let r[0. . n] be a new array

3/13/11

rf0] =0
for j = 1ton

g =—00

fori = 1toj

q = max(g, pli] +r[j —i])

rlil=4q
return r[n]
3/13/11 CS380 Algorithm Design and Analysis 19

Running Time

» What is the running time of the previous two
algorithms?

31311 CS380 Algorithm Design and Analysis 20

Subproblem graphs

« Directed Graph:
o One vertex for each distinct subproblem
o Has a directed edge (x, y) if computing an
optimal solution to subproblem x directly
requires knowing an optimal solution to
subproblem y

(CS380 Algorithm Design and Analysis

3M13/11

Subproblem Graph for Rod-Cutting

* Whenn =4:

3/13/11

3/13/11 CS380 Algorithm Design and Analysis 22

Reconstructing a Solution

+ We have only computed the value of an
optimal solution

oi.e.Whenn=4,r,=10

* We still don’t know how to cut up the rod!

31311 CS380 Algorithm Design and Analysis 23

Rod-Cutting

EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
let 7[0..n] and s[0..n] be new arrays

r[0] =0
forj =1ton
q = —00
fori =1toj
ifg < pli]+rlj—1i]
q = plil+rlj—i]
s[jl=i
rlil=4q

return r and s

Saves the first cut made in an optimal solution for a problem of size i in s[i].
To print out the cuts made in an optimal solution:

PRINT-CUT-ROD-SOLUTION (p,)
(r,s) = EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
while n > 0

print s[n]

n=n-—sn]

3M13/11 (CS380 Algorithm Design and Analysis 24

Example

« PRINT-CUT-ROD-SOLUTION(p, 8)
i 0123 4 5 6 7 8
rE1[0 1 5 8 10 13 17 18 22
sijjo 123 2 2 6 1 2

3/13/11 CS380 Algorithm Design and Analysis 25

3/13/11

Problem

* Do exercise 15.1-5 on page 370

31311 CS380 Algorithm Design and Analysis 26

Summary

- Divide and Conquer is best used when there
are no overlapping subproblems

» Otherwise, use dynamic programming!

3M13/11 (CS380 Algorithm Design and Analysis 27

