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Augmenting Data Structures 

Chapter 14 
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Augmenting Data Structures 

•  Sometimes a “textbook” data structure is 
sufficient to solve a problem exactly as it is 

•  However, there will be times when 
augmenting an existing data structure by 
adding more data will be required 

•  Rarely will you invent a brand new data 
structure 
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Dynamic Order Statistic 

•  OS-SELECT(i, S):  

•  OS-RANK(x, S): 

•  Example 
o  S: {6, 3, 74,23, 84, 8, 19, 21} 

o  What’s the result of OS-SELECT(4, S) 

o  What’s the result of OS-RANK(23, S) 
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Order Statistics 

•  We have previously seen that any order 
statistic can be determined in O(n) from an 
unordered set 

•  How? 

•  Today we’ll speed this up to O(lg n) time 
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Idea 

•  Augment a red-black tree 

•  The red-black tree will represent the set 

•  The size of every subtree will be stored in 
the node 

•  Notation for nodes 
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Order Statistic Tree 

•  Example 

•  size[x] = size[left[x]] + size[right[x]] + 1 
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OS-SELECT(x, i) 
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Example 

•  What’s the result of OS-SELECT(root[T], 17) 
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Running Time 

•  What’s the running time of OS-SELECT? 
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OS-Rank(T, x) 
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Example 

•  What is the result of OS-RANK(T, 38) 

•  What is the running time of OS-RANK? 
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Maintaining Subtree Sizes 

•  Can the sizes be efficiently maintained? 
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Your Turn 

•  OS-SELECT(root[T], 5) on the following tree 
o  Note that you will need to calculate the sizes 

•  INSERT(“K”) into the tree 
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Methodology for Augmentation 

1.  Choose an underlying data structure 

2.  Determine additional information to be 
stored in the data structure 

3.  Verify that this information can be 
maintained for modifying operations 

4.  Develop new dynamic set operations that 
use the information 
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Interval Trees 

•  Goal: Maintain a dynamic set of intervals 
(closed), such as time intervals 

•  Query: for a given interval i, find an interval 
in the set that overlaps i 
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Following the Methodology 

1.  Choose an underlying data structure 
o  Red-black tree keyed on the low endpoint 

2.  Determine additional information to be 
stored in the data structure 
o  Store in each node x the largest value m[x] in 

the subtree rooted at x, as well as the interval int
[x] corresponding to the key 
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Example 
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Modifying Operations 

3.  Verify that this information can be 
maintained for modifying operations 
o  Insert: fix m’s on the way down 

o  Rotation and fixup: O(1) 
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New Operations 

•  Develop new dynamic set operations that 
use the information 
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Example 

•  INTERVAL-SEARCH(T, [14, 16]) 
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Another Example 

•  INTERVAL-SEARCH(T, [12, 14]) 
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