
3/7/11

1

1

Augmenting Data Structures

Chapter 14

3/7/11 CS380 Algorithm Design and Analysis

2

Augmenting Data Structures

•  Sometimes a “textbook” data structure is
sufficient to solve a problem exactly as it is

•  However, there will be times when
augmenting an existing data structure by
adding more data will be required

•  Rarely will you invent a brand new data
structure

3/7/11 CS380 Algorithm Design and Analysis

3

Dynamic Order Statistic

•  OS-SELECT(i, S):

•  OS-RANK(x, S):

•  Example
o  S: {6, 3, 74,23, 84, 8, 19, 21}

o  What’s the result of OS-SELECT(4, S)

o  What’s the result of OS-RANK(23, S)

3/7/11 CS380 Algorithm Design and Analysis

3/7/11

2

4

Order Statistics

•  We have previously seen that any order
statistic can be determined in O(n) from an
unordered set

•  How?

•  Today we’ll speed this up to O(lg n) time

3/7/11 CS380 Algorithm Design and Analysis

5

Idea

•  Augment a red-black tree

•  The red-black tree will represent the set

•  The size of every subtree will be stored in
the node

•  Notation for nodes

3/7/11 CS380 Algorithm Design and Analysis

key

size

6

Order Statistic Tree

•  Example

•  size[x] = size[left[x]] + size[right[x]] + 1

3/7/11 CS380 Algorithm Design and Analysis

3/7/11

3

7

OS-SELECT(x, i)

3/7/11 CS380 Algorithm Design and Analysis

8

Example

•  What’s the result of OS-SELECT(root[T], 17)

3/7/11 CS380 Algorithm Design and Analysis

9

Running Time

•  What’s the running time of OS-SELECT?

3/7/11 CS380 Algorithm Design and Analysis

3/7/11

4

10

OS-Rank(T, x)

3/7/11 CS380 Algorithm Design and Analysis

11

Example

•  What is the result of OS-RANK(T, 38)

•  What is the running time of OS-RANK?

3/7/11 CS380 Algorithm Design and Analysis

12

Maintaining Subtree Sizes

•  Can the sizes be efficiently maintained?

3/7/11 CS380 Algorithm Design and Analysis

3/7/11

5

13

Your Turn

•  OS-SELECT(root[T], 5) on the following tree
o  Note that you will need to calculate the sizes

•  INSERT(“K”) into the tree

3/7/11 CS380 Algorithm Design and Analysis

14

Methodology for Augmentation

1.  Choose an underlying data structure

2.  Determine additional information to be
stored in the data structure

3.  Verify that this information can be
maintained for modifying operations

4.  Develop new dynamic set operations that
use the information

3/7/11 CS380 Algorithm Design and Analysis

15

Interval Trees

•  Goal: Maintain a dynamic set of intervals
(closed), such as time intervals

•  Query: for a given interval i, find an interval
in the set that overlaps i

3/7/11 CS380 Algorithm Design and Analysis

4 8

5 11

7 10

17

15

19

18 22 23

3/7/11

6

16

Following the Methodology

1.  Choose an underlying data structure
o  Red-black tree keyed on the low endpoint

2.  Determine additional information to be
stored in the data structure
o  Store in each node x the largest value m[x] in

the subtree rooted at x, as well as the interval int
[x] corresponding to the key

3/7/11 CS380 Algorithm Design and Analysis

17

Example

3/7/11 CS380 Algorithm Design and Analysis

18

Modifying Operations

3.  Verify that this information can be
maintained for modifying operations
o  Insert: fix m’s on the way down

o  Rotation and fixup: O(1)

3/7/11 CS380 Algorithm Design and Analysis

3/7/11

7

19

New Operations

•  Develop new dynamic set operations that
use the information

3/7/11 CS380 Algorithm Design and Analysis

20

Example

•  INTERVAL-SEARCH(T, [14, 16])

3/7/11 CS380 Algorithm Design and Analysis

21

Another Example

•  INTERVAL-SEARCH(T, [12, 14])

3/7/11 CS380 Algorithm Design and Analysis

