Red-Black Trees

Chapters 13

3111 CS380 Algorithm Design and Analysis 1

Balanced Trees

* Why do we want to balance trees?

» Red-Black Trees are an example of
balanced trees
* Other balanced trees:
o AVL trees
o B-trees
o 2-3 trees

3111 CS380 Algorithm Design and Analysis 2

Red-Black Tree

» BST data structure with extra color field for
each node, satisfying the red-black
properties:

1. Every node is either red or black.

2. The root is black.

3. Every leaf is black.

4. If a node is red, both children are black.

5. Every path from node to descendent leaf
contain the same number of black nodes.

31 (CS380 Algorithm Design and Analysis

3/2/11

Example

* Attributes of nodes:
o key
o left
o right
o p (parent)

o color

* Note the use of the sentinel T.nil
o Parent of the root is T.nil
o All leaves are T.nil

3111 CS380 Algorithm Design and Analysis 4

Properties of RB-Trees

+ Black-height of a node:

o Number of black nodes on any simple path from,
but not including, a node x down to a leaf

» A red-black tree with n internal nodes has
height at most 2Ig(n+1)

3111 CS380 Algorithm Design and Analysis 5

Rotations

« Why are rotations necessary in red-black
trees?

* How are rotations performed?

» What is the running time of rotation?

31 (CS380 Algorithm Design and Analysis 6

3/2/11

Example

+ Color this tree
* Insert 8

¢ Insert 11

* Insert 10

Properties of RB-Trees

1 Every node is either red or black.
2. The root is black.
3. Every leaf is black.
4. Ifanode is red, both children are black.
5. Every path from node to descendent leaf contain the same number of
black nodes.
3111 CS380 Algorithm Design and Analysis 7

Left-Rotate

LEFT-ROTATE(T, x)
y = x.right
x.right = y.left
if y.left # T.nil
y.left.p = x
y.p = X.p
if x.p == T.nil
T.root =y
elseif x == x.p.left
x.p.left =y
else x.p.right = y
y.left = x
xX.p=y

// sety

// turn y’s left subtree into x’s right subtree

// link x’s parent to y

// put x on y’s left

3111 CS380 Algorithm Design and Analysis 8

Example

* Rotate left about 9

31 (CS380 Algorithm Design and Analysis 9

3/2/11

Inserting into a RB-Tree

This is regular binary
search tree insertion

Which RB-Tree property
could have been violated?

Properties of RB-Trees

RB-INSERT(T, z)

y = T.nil

x = T.root

while x # T.nil
y=x

if z.key < x.key

elsei

1 Every node is either red or black.)

2. The root is black. ¥-lej

3. Every leaf is black. else y.right = 2

4. If anode is red, both children are black. z.left = T.nil

5. Every path from node to descendent leaf z.right = T.nil

contain the same number of black nodes. z.color = RED
RB-INSERT-FIXUP(T, 2)

3111 CS380 Algorithm Design and Analysis 10

RB-Insert-Fixup

RB-INSERT-FIXUP(T. 2)
while z.p.color == RED
if z.p .p.left

y = z.p.p.right
if y.color == RED

Z.p.color = BLACK // case
y.color = BLACK // case
z color = RED // case 1
z M case 1
else if z p.right
z 4 M case 2
LEFT-ROTATE(T, 2) // case 2
.color = BLACK // case 3
Z.p.p-color = RED // case 3
RIGHT-ROTATE(T, p) // case 3
else (same as then clause with “right” and “left” exchanged)
T.root.color = BLACK
3111 5380 Algorithm Design and Analysis 1

Cases

Case 1: yisred

o}

15)92}5

« B If 2 is a left child «

31 (CS380 Algorithm Design and Analysis 12

3/2/11

Cases

Case 2: y is black, z is a right child Case 3: y is black, z is a left child

B Y a B
Case 2 Case 3
3/1/11 C$380 Algorithm Design and Analysis 13
Example

* Insert 10

3111 CS380 Algorithm Design and Analysis 14

Example

* Insert 15

31 (CS380 Algorithm Design and Analysis 15

3/2/11

