
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Minimum and Maximum
- HINIMUM(A, n)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Analysis
- Total number of comparisons when:
० n is odd:

\qquad
\qquad
\qquad

\qquad

\qquad

Order Statistics

\qquad
setection in worst-case Lineal
Time

- The worst-case for RANDOMIZED-SELECT
is n^{2}
- Can we do better?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Finding i Largest Numbers

- Problem 9-1: Given a set of n numbers, we wish to find the i largest in sorted order using a comparison-based algorithm. Find the algorithm that implements each of the following methods with the best asymptotic worst-case running time, and analyze the running times of the algorithms in terms of n and i.
- Sort the numbers, and list the i largest.
- Build a max-priority queue from the numbers and call EXTRACT-MAX i times.
- Use an order-statistic algorithm to find the ith largest number, partition around that number, and sort the I largest numbers.

