
\qquad

Counting Sort
- Depends on a key assumption:
o numbers to be sorted are integers in $\{0$,
$1, \ldots, \mathrm{k}\}$
Input: $\mathrm{A}[1 . . \mathrm{n}]$
Output: $\mathrm{B}[1 . . \mathrm{n}]$, sorted. B is assumed
to be already allocated and is given as
a parameter
- Auxiliary storage: C[0..k]
$\frac{2}{214811}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Analysis

- Is counting sort stable?
- What does stable mean?
- Analysis:
- How big of k is practical?

Your Turn

Radix Sort

- How IBM made its money. Punch card readers for census tabulation in early 1900's. Card sorters, worked on one column at a time. It's the algorithm for using the machine that extends the technique to multi-column sorting. The human operator was part of the algorithm!
- We're going to sort d digits

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example
326 453 608 835 751 435 704 690

\qquad
\qquad

\qquad
\qquad
\qquad

BUCKET-SORT(A, n)

