
2/14/11

1

1

Quicksort

Chapter 7

2/14/11 CS380 Algorithm Design and Analysis

2

Sorting

•  What’s the running time for:
o  Insertion Sort

o  Merge Sort

o  Heapsort

•  Which of these algorithms sort in place?

2/14/11 CS380 Algorithm Design and Analysis

3

Quicksort

•  The Basic version of quicksort was invented
by C. A. R. Hoare in 1960

•  Divide and Conquer algorithm

•  In practice, it is the fastest in-place sorting
algorithm

2/14/11 CS380 Algorithm Design and Analysis

2/14/11

2

4

Divide and Conquer

•  Divide: Partition the array into two subarrays
around a pivot x such that elements to the
left are <= x and elements to the right are >=
x

•  Conquer: Recursively sort the two subarrays

•  Combine: Trivial!

 Key?

2/14/11 CS380 Algorithm Design and Analysis

 ≤ x ≥x X

Good
Partitioning
Subroutine!

5

Quicksort Pseudocode

QUICKSORT(A, p, r)

•  What’s the call to sort the entire array?

2/14/11 CS380 Algorithm Design and Analysis

QUICKSORT(A, 1, length[A])

6

Partitioning the Array

PARTITION(A, p, r)

2/14/11 CS380 Algorithm Design and Analysis

2/14/11

3

7

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

Example
1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

2/14/11 CS380 Algorithm Design and Analysis

p r

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7
p r

7
x

i j

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

p r
i j

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

p r
i j

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

8

Example

2/14/11 CS380 Algorithm Design and Analysis

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7
1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7
p r

i j

1 2 3 4 5 6 7 8

5 3 9 1 8 2 4 7

7
x

1 2 3 4 5 6 7 8

5 3 1 9 8 2 4 7

i j
p r

1 2 3 4 5 6 7 8

5 3 1 9 8 2 4 7
1 2 3 4 5 6 7 8

5 3 1 9 8 2 4 7

1 2 3 4 5 6 7 8

5 3 1 2 4 9 8 7
i j p r

1 2 3 4 5 6 7 8

5 3 1 2 4 7 8 9
i p r

Return the
location of pivot

9

Correctness of Partition

•  During the execution of PARTITION there
are four distinct sections of the array:

2/14/11 CS380 Algorithm Design and Analysis

x
p r i j

≤ x > x unknown

2/14/11

4

10

Exercise - Partition the Following

44 75 23 43 55 12 64 77 33 41

2/14/11 CS380 Algorithm Design and Analysis

11

Analysis of Partition

•  What is the running time of PARTITION?

2/14/11 CS380 Algorithm Design and Analysis

12

Quicksort in Action

2/14/11 CS380 Algorithm Design and Analysis

2/14/11

5

13

Exercise

2/14/11 CS380 Algorithm Design and Analysis

•  Sort the following array using quicksort

3 4 2 5 1

14

Performance of Quicksort

•  What does the performance of quicksort
depend on?

•  What would give us the best case?

2/14/11 CS380 Algorithm Design and Analysis

15

Best Case of Quicksort

2/14/11 CS380 Algorithm Design and Analysis

•  The total partitioning on each level is O(n), and it
take lg n levels of perfect partitions to get to single
element subproblems. When we are down to single
elements, the problems are sorted. Thus the total
time in the best case is O(n lg n).

2/14/11

6

16

Worst Case of Quick Sort

2/14/11 CS380 Algorithm Design and Analysis

•  Suppose our pivot element splits the array as unequally as
possible. Thus instead of n/2 elements in the larger half, we
get zero, meaning that the pivot element is the biggest
element in the array. Now we have n-1 levels, instead of lg
n

•  T(n) = T(n-1) + O(n), which has a solution of O(n2)

17

Quicksort Analysis

•  To justify its name, Quicksort had better be
good in the average case.

•  Showing this requires some intricate
analysis.

2/14/11 CS380 Algorithm Design and Analysis

18

Average Case Analysis

•  Let’s look at this by intuition

•  Running quicksort on a random array is
likely to produce a mix of balanced and
unbalanced partitions

•  It has been shown that 80% of the time
partition produces good splits and 20% of
the time it produces bad splits

2/14/11 CS380 Algorithm Design and Analysis

2/14/11

7

19

Average Case Analysis

•  This is really no different than:

2/14/11 CS380 Algorithm Design and Analysis

n

n - 1

((n -1) / 2) - 1 (n - 1) / 2

n

(n - 1) / 2 (n - 1) / 2

•  Thus, the O(n -1) of the bad split can be
absorbed into the O(n) of the good split

20

Average Case Analysis

•  The running time of quicksort when
alternating good and bad splits is like the
running time for good splits alone

•  O(n lg n) but with a slightly larger constant
hidden by the O-notation

2/14/11 CS380 Algorithm Design and Analysis

