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Quicksort 

Chapter 7 
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Sorting 

•  What’s the running time for: 
o  Insertion Sort 

o  Merge Sort 

o  Heapsort 

•  Which of these algorithms sort in place? 
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Quicksort 

•  The Basic version of quicksort was invented 
by C. A. R. Hoare in 1960 

•  Divide and Conquer algorithm 

•  In practice, it is the fastest in-place sorting 
algorithm 
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Divide and Conquer 

•  Divide: Partition the array into two subarrays 
around a pivot x such that elements to the 
left are <= x and elements to the right are >= 
x 

•  Conquer: Recursively sort the two subarrays 

•  Combine: Trivial! 

     Key? 
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           ≤ x ≥x X 

Good 
Partitioning 
Subroutine! 
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Quicksort Pseudocode 

QUICKSORT(A, p, r) 

•  What’s the call to sort the entire array? 
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QUICKSORT(A, 1, length[A]) 
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Partitioning the Array 

PARTITION(A, p, r) 
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1 2 3 4 5 6 7 8 

5 3 9 1 8 2 4 7 

1 2 3 4 5 6 7 8 

5 3 9 1 8 2 4 7 

Example 
1 2 3 4 5 6 7 8 

5 3 9 1 8 2 4 7 
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p r 

1 2 3 4 5 6 7 8 

5 3 9 1 8 2 4 7 
p r 
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x 

i j 

1 2 3 4 5 6 7 8 

5 3 9 1 8 2 4 7 

p r 
i j 

1 2 3 4 5 6 7 8 

5 3 9 1 8 2 4 7 

p r 
i j 

1 2 3 4 5 6 7 8 

5 3 9 1 8 2 4 7 
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Example 
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1 2 3 4 5 6 7 8 

5 3 9 1 8 2 4 7 
1 2 3 4 5 6 7 8 

5 3 9 1 8 2 4 7 
p r 

i j 

1 2 3 4 5 6 7 8 

5 3 9 1 8 2 4 7 

7 
x 

1 2 3 4 5 6 7 8 

5 3 1 9 8 2 4 7 

i j 
p r 

1 2 3 4 5 6 7 8 

5 3 1 9 8 2 4 7 
1 2 3 4 5 6 7 8 

5 3 1 9 8 2 4 7 

1 2 3 4 5 6 7 8 

5 3 1 2 4 9 8 7 
i j p r 

1 2 3 4 5 6 7 8 

5 3 1 2 4 7 8 9 
i p r 

Return the 
location of pivot 
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Correctness of Partition 

•  During the execution of PARTITION there 
are four distinct sections of the array: 
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x 
p r i j 

≤ x > x unknown 
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Exercise - Partition the Following 

44 75 23 43 55 12 64 77 33 41 
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Analysis of Partition 

•  What is the running time of PARTITION? 
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Quicksort in Action 
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Exercise 

2/14/11 CS380 Algorithm Design and Analysis 

•  Sort the following array using quicksort 

3 4 2 5 1 
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Performance of Quicksort 

•  What does the performance of quicksort 
depend on? 

•  What would give us the best case? 
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Best Case of Quicksort 
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•  The total partitioning on each level is O(n), and it 
take lg n levels of perfect partitions to get to single 
element subproblems. When we are down to single 
elements, the problems are sorted. Thus the total 
time in the best case is O(n lg n). 
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Worst Case of Quick Sort 
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•  Suppose our pivot element splits the array as unequally as 
possible. Thus instead of n/2 elements in the larger half, we 
get zero, meaning that the pivot element is the biggest 
element in the array. Now we have n-1 levels, instead of lg 
n 

•  T(n) = T(n-1) + O(n), which has a solution of O(n2) 
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Quicksort Analysis 

•  To justify its name, Quicksort had better be 
good in the average case.  

•  Showing this requires some intricate 
analysis. 
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Average Case Analysis 

•  Let’s look at this by intuition 

•  Running quicksort on a random array is 
likely to produce a mix of balanced and 
unbalanced partitions 

•  It has been shown that 80% of the time 
partition produces good splits and 20% of 
the time it produces bad splits 
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Average Case Analysis 

•  This is really no different than: 
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n 

n - 1 

( (n -1) / 2 ) - 1 (n - 1) / 2 

n 

(n - 1) / 2 (n - 1) / 2 

•  Thus, the O(n -1) of the bad split can be 
absorbed into the O(n) of the good split 
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Average Case Analysis 

•  The running time of quicksort when 
alternating good and bad splits is like the 
running time for good splits alone 

•  O(n lg n) but with a slightly larger constant 
hidden by the O-notation 
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