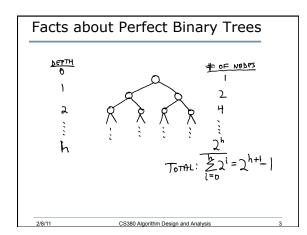


Review of Binary Trees

• What is a binary tree?

2/8/11

- What is the depth of the node?
- What is the height of a node?
- What is the height of the tree?
- What is a complete binary tree?



CS380 Algorithm Design and Analysis

Complete Binary Trees

- Nodes at depth h (the lowest level) are as far left as possible
- What is the relationship between the height and the number of nodes?

Heaps

2/8/11

2/8/11

2/8/11

- A heap is an complete binary tree
- Extra nodes go from left to right at the lowest level

CS380 Algorithm Design and Analysis

- Where the value at each node is ≥ the values at its children (if any)
- This is called the *heap property* for maxheaps

CS380 Algorithm Design and Analysis

Example	

CS380 Algorithm Design and Analysis

6

Storing Heaps

- As arrays!
- Root of tree is:
- Parent of A[i] is:
- Left child of A[i] is:
- Right child of A[i] is:

Example

2/8/11

• n = 13

2/8/11

92 85 73 81 44 59 64 13 23 36 32 18 54

CS380 Algorithm Design and Analysis

CS380 Algorithm Design and Analysis

CS380 Algorithm Design and Analysis

Functions on Heaps

- MAX-HEAPIFY
- BUILD-MAX-HEAP
- HEAPSORT
- MAX-HEA-INSERT
- HEAP-EXTRACT-MAX
- HEAP-INCREASE-KEY
- HEAP-MAXIMUM

2/8/11

MAX-HEAPIFY

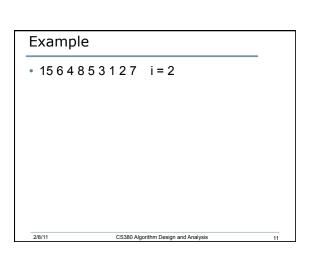
2/8/11

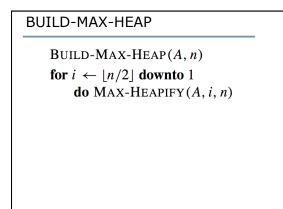
2/8/11

MAX-HEAPIFY(A, i, n) $l \leftarrow LEFT(i)$ $r \leftarrow RIGHT(i)$ if $l \le n$ and A[l] > A[i]then $largest \leftarrow l$ else $largest \leftarrow i$ if $r \le n$ and A[r] > A[largest]then $largest \leftarrow r$ if $largest \ne i$ then exchange $A[i] \leftrightarrow A[largest]$ MAX-HEAPIFY(A, largest, n)

CS380 Algorithm Design and Analysis

10





CS380 Algorithm Design and Analysis

Example

4 3 7 13 1 20 12 16 2 18

HEAPSORT

2/8/11

HEAPSORT(A, n) BUILD-MAX-HEAP(A, n) for $i \leftarrow n$ downto 2 do exchange $A[1] \leftrightarrow A[i]$ MAX-HEAPIFY(A, 1, i - 1)

CS380 Algorithm Design and Analysis

CS380 Algorithm Design and Analysis

CS380 Algorithm Design and Analysis

13

14

15

Example

2/8/11

2/8/11

• 20 18 12 16 3 7 4 13 2 1

Priority Queues

- Priority Queues are an example of an application of heaps.
- A priority queue is a data structure for maintaining a set of elements, each with an associated key.

16

17

Priority Queues

- Max-priority queue supports dynamic set operations:
 - \circ INSERT(S, x): inserts element x into set S.
 - MAXIMUM(S): returns element of S with largest key.
 - $\circ~\mbox{EXTRACT-MAX(S):}$ removes and returns element S with largest key.
 - INCREASE-KEY(S, x, k): increases value of element x's key to k. Assume k >= x's current key value.

HEAP-MAXIMUM(A)

HEAP-MAXIMUM(A) return A[1]

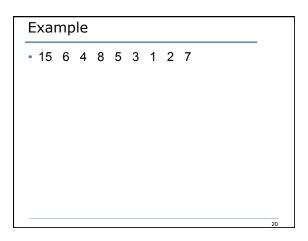
Time: $\Theta(1)$.

HEAP-EXTRACT-MAX

- · Given the array A:
 - Make sure heap is not empty.
 - Make a copy of the maximum element.
 - $_{\rm o}\,$ Make the last node in the tree the new root.
 - Re-heapify the heap, with one fewer node.
 - Return the copy of the maximum element.

 $\begin{array}{l} \text{HEAP-EXTRACT-MAX}(A, n) \\ \text{if } n < 1 \\ \text{then error "heap underflow"} \\ max \leftarrow A(1) \\ A(1) \leftarrow A(n) \\ \text{MAX-HEAPIFY}(A, 1, n-1) > \text{remakes heap} \\ \text{return } max \end{array}$

19



HEAP-INCREASE-KEY

- Given set S, element x, and new key value k:
 - Make sure >= x's current key.
 - Update x's key value to k.
 - Traverse the tree upward comparing x to its parent and swapping keys if necessary, until x's key is smaller than its parent's key.

Example

Increase key of node 6 in previous example to 20

MAX-HEAP-INSERT

- Given a key k to insert into the heap:
 - Insert a new node in the very last position in the tree with the key -infinity.

22

23

24

 \circ Increase the -infinity key to k using the HEAP-INCREASE-KEY procedure.

 $\begin{aligned} & \text{MAX-HEAP-INSERT}(A, key, n) \\ & A[n+1] \leftarrow -\infty \\ & \text{HEAP-INCREASE-KEY}(A, n+1, key) \end{aligned}$

Example

• Insert 12 into the above heap.