
1

1 CS380 Algorithm Design and Analysis

Recurrence Relations – Running
Time for Recursive Functions

Chapter 2

2/6/11

2

Asymptotic Dominance in Action

O(lg n) O(n) O(n lg n) n2 2n n!
10 0.003 µs 0.01 µs 0.033 µs 0.1 µs 1 µs 3.63 ms
20 0.004 µs 0.02 µs 0.086 µs 0.4 µs 1 ms 77.1 years
30 0.005 µs 0.03 µs 0.147 µs 0.9 µs 1 sec 8.4*1015 yrs
40 0.005 µs 0.04 µs 0.213 µs 1.6 µs 18.3 min
50 0.006 µs 0.05 µs 0.282 µs 2.5 µs 13 days
100 0.007 µs 0.1 µs 0.644 µs 10 µs 4*1013 yrs
1,000 0.010 µs 1.00 µs 9.966 µs 1 ms
10,000 0.013 µs 10 µs 130 µs 100 ms
100,000 0.017 µs 0.10 ms 1.67 ms 10 sec
1,000,000 0.020 µs 1 ms 19.93 ms 16.7 min
10,000,000 0.023 µs 0.01 sec 0.23 sec 1.16 days
100,000,000 0.027 µs 0.10 sec 2.66 sec 115.7 days
1,000,000,000 0.030 µs 1 sec 29.90 sec 3.7 years

2/6/11 CS380 Algorithm Design and Analysis

3

Gnome Sort

2/6/11 CS380 Algorithm Design and Analysis

http://www.portlandoctopus.com/top-5-garden-gnomes/

2

4

Divide and Conquer Algorithms

•  Analysis of divide and conquer algorithms
requires knowledge of:
o  Mathematical Induction

o  Substitution/Iterative Method

o  Recurrences

2/6/11 CS380 Algorithm Design and Analysis

5 CS380 Algorithm Design and Analysis

Motivation

•  The following structure and function exist:
struct Tree

{

 int info;

 Tree * left;

 Tree * right;

 Tree(int value, Tree * lchild, Tree * rchild) : info
(value), left(lchild), right(rchild) { }

};

// return true if & only if all values in t are less than val

bool ValsLess(Tree * t, int val)

2/6/11

Thank you Owen Astrachan

6

Motivation

// returns true if t represents a binary

// search tree containing no duplicate values;

bool IsBST(Tree * t)

{

 if (t == NULL) return true;

 return ValsLess(t->left, t->info) &&

 ValsGreater(t->right, t->info) &&

 IsBST(t->left) &&

 IsBST(t->right);

}

•  What is the complexity or running time of the
above function on a tree with n nodes?

2/6/11 CS380 Algorithm Design and Analysis

3

7

Another Example

•  What is the asymptotic complexity of the
function below? Assume Combine is O(n)

// postcondition: a[left] <= ... <= a[right]

void DoStuff(vector<int> & a, int left, int right)

{

 int mid = (left + right)/2;

 if (left < right)

 {

 DoStuff(a, left, mid);

 DoStuff(a, mid + 1, right);

 Combine(a, left, mid, right);

 }

}

2/6/11 CS380 Algorithm Design and Analysis

8

Another Example

•  What does the function below remind you of?
// postcondition: a[left] <= ... <= a[right]

void DoStuff(vector<int> & a, int left, int right)

{

 int mid = (left + right)/2;

 if (left < right)

 {

 DoStuff(a, left, mid);

 DoStuff(a, mid + 1, right);

 Combine(a, left, mid, right);

 }

}

2/6/11 CS380 Algorithm Design and Analysis

Merge Sort!

9

Recurrence Relation

•  A recurrence relation contains two
equations
o  One for the general case

o  One for the base case

2/6/11 CS380 Algorithm Design and Analysis

4

10

Efficiency of Binary Search

2/6/11 CS380 Algorithm Design and Analysis

11

Merge Sort

•  What was the
running time
of the Merge
procedure in
Merge Sort?

2/6/11 CS380 Algorithm Design and Analysis

Ο(n)

12

Merge Sort

MERGE-SORT(A, p, r)

∇ p & r are indices into the array (p < r)

if p < r ∇Check for base case

 then q ← ⎣(p + r) / 2⎦ ∇Divide

 MERGE-SORT(A, p, q) ∇Conquer

 MERGE-SORT(A, q + 1, r) ∇Conquer

 MERGE(A, p, q, r) ∇Combine

2/6/11 CS380 Algorithm Design and Analysis

5

13

Recurrence Relation

•  Let T(n) be the time for Merge-Sort to
execute on an n element array.

•  The time to execute on a one element array
is O(1)

•  Then we have the following relationship:

2/6/11 CS380 Algorithm Design and Analysis

14

Merge Sort

•  To solve the recurrence relation we’ll write n
instead of O(n) as it makes the algebra
simpler:
o  T(n) = 2 T(n/2) + n

o  T(1) = 1

•  Solve the recurrence by iteration
(substitution)

•  Use induction to prove the solution is correct

2/6/11 CS380 Algorithm Design and Analysis

15

Recurrence Relations to Remember

2/6/11 CS380 Algorithm Design and Analysis

T(n) = T(n/2) + O(1)

T(n) = T(n-1) + O(1)

T(n) = 2 T(n/2) + O(1)

T(n) = T(n-1) + O(n)

T(n) = 2 T(n/2) + O(n)

6

16

Your Turn

•  Solve the following recurrence relation using
the expansion (iteration) method
o  T(n) = T(n-1) + 2n -1

o  T(0) = 0

2/6/11 CS380 Algorithm Design and Analysis

17

Approaches to Algorithm Design

•  Incremental
o  Job is partly done – do a little more, repeat until

done.

•  Divide-and-Conquer (recursive)
o  Divide problem into sub-problems of the same

kind.
o  For small subproblems, solve, else, solve them

recursively.

o  Combine subproblem solutions to solve the
whole thing.

2/6/11 CS380 Algorithm Design and Analysis

18 CS380 Algorithm Design and Analysis

For Next Time

•  So far we’ve covered chapters 1, 2, and 3.

2/6/11

