
1 

1 CS380 Algorithm Design and Analysis 

Recurrence Relations – Running 
Time for Recursive Functions 

Chapter 2 
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Asymptotic Dominance in Action 

O(lg n) O(n) O(n lg n) n2 2n n! 
10 0.003 µs 0.01 µs 0.033 µs 0.1 µs 1 µs 3.63 ms 
20 0.004 µs 0.02 µs 0.086 µs 0.4 µs 1 ms 77.1 years 
30 0.005 µs 0.03 µs 0.147 µs 0.9 µs 1 sec 8.4*1015 yrs 
40 0.005 µs 0.04 µs 0.213 µs 1.6 µs 18.3 min 
50 0.006 µs 0.05 µs 0.282 µs 2.5 µs 13 days 
100 0.007 µs 0.1 µs 0.644 µs 10 µs 4*1013 yrs 
1,000 0.010 µs 1.00 µs 9.966 µs 1 ms 
10,000 0.013 µs 10 µs 130 µs 100 ms 
100,000 0.017 µs 0.10 ms 1.67 ms 10 sec 
1,000,000 0.020 µs 1 ms 19.93 ms 16.7 min 
10,000,000 0.023 µs 0.01 sec 0.23 sec 1.16 days 
100,000,000 0.027 µs 0.10 sec 2.66 sec 115.7 days 
1,000,000,000 0.030 µs 1 sec 29.90 sec 3.7 years 
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Gnome Sort 
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Divide and Conquer Algorithms 

•  Analysis of divide and conquer algorithms 
requires knowledge of: 
o  Mathematical Induction 

o  Substitution/Iterative Method 

o  Recurrences 
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Motivation 

•  The following structure and function exist: 
struct Tree  

{  

  int info;  

  Tree * left;  

  Tree * right;  

  Tree(int value, Tree * lchild, Tree * rchild) : info
(value), left(lchild), right(rchild) { }  

};  

// return true if & only if all values in t are less than val  

bool ValsLess(Tree * t, int val)  
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Motivation 

// returns true if t represents a binary 

// search tree containing no duplicate values;  

bool IsBST(Tree * t)  

{  

  if (t == NULL) return true;  

  return ValsLess(t->left, t->info) &&  

         ValsGreater(t->right, t->info) &&  

         IsBST(t->left) &&  

         IsBST(t->right);  

} 

•  What is the complexity or running time of the 
above function on a tree with n nodes? 
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Another Example 

•  What is the asymptotic complexity of the 
function below? Assume Combine is O(n) 

// postcondition: a[left] <= ... <= a[right] 

void DoStuff(vector<int> & a, int left, int right)  

{  

  int mid = (left + right)/2;  

  if (left < right)  

  {  

    DoStuff(a, left, mid);  

    DoStuff(a, mid + 1, right);  

    Combine(a, left, mid, right);  

  }  

} 
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Another Example 

•  What does the function below remind you of? 
// postcondition: a[left] <= ... <= a[right] 

void DoStuff(vector<int> & a, int left, int right)  

{  

  int mid = (left + right)/2;  

  if (left < right)  

  {  

    DoStuff(a, left, mid);  

    DoStuff(a, mid + 1, right);  

    Combine(a, left, mid, right);  

  }  

} 
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Recurrence Relation 

•  A recurrence relation contains two 
equations 
o  One for the general case 

o  One for the base case 
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Efficiency of Binary Search 
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Merge Sort 

•  What was the 
running time 
of the Merge 
procedure in 
Merge Sort? 
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Merge Sort 

MERGE-SORT(A, p, r) 

∇ p & r are indices into the array (p < r) 

if p < r              ∇Check for base case 

  then q ← ⎣(p + r) / 2⎦    ∇Divide 

    MERGE-SORT(A, p, q)     ∇Conquer 

    MERGE-SORT(A, q + 1, r) ∇Conquer 

    MERGE(A, p, q, r)       ∇Combine 

2/6/11 CS380 Algorithm Design and Analysis 



5 

13 

Recurrence Relation 

•  Let T(n) be the time for Merge-Sort to 
execute on an n element array.  

•  The time to execute on a one element array 
is O(1) 

•  Then we have the following relationship: 

2/6/11 CS380 Algorithm Design and Analysis 

14 

Merge Sort 

•  To solve the recurrence relation we’ll write n 
instead of O(n) as it makes the algebra 
simpler: 
o  T(n) = 2 T(n/2) + n  

o  T(1) = 1 

•  Solve the recurrence by iteration 
(substitution) 

•  Use induction to prove the solution is correct 
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Recurrence Relations to Remember 
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T(n) = T(n/2) + O(1) 

T(n) = T(n-1) + O(1) 

T(n) = 2 T(n/2) + O(1)  

T(n) = T(n-1) + O(n)  

T(n) = 2 T(n/2) + O(n) 
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Your Turn 

•  Solve the following recurrence relation using 
the expansion (iteration) method 
o  T(n) = T(n-1) + 2n -1 

o  T(0) = 0 
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Approaches to Algorithm Design 

•  Incremental 
o  Job is partly done – do a little more, repeat until 

done. 

•  Divide-and-Conquer (recursive) 
o  Divide problem into sub-problems of the same 

kind. 
o  For small subproblems, solve, else, solve them 

recursively. 

o  Combine subproblem solutions to solve the 
whole thing. 
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For Next Time 

•  So far we’ve covered chapters 1, 2, and 3. 
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