Selecting the Right Jobs

» A movie star wants to the select the
maximum number of starring roles such that
no two jobs require his presence at the same
time.

Tarjan of the Jungle ‘The Four Volume Problem

The President's Algorist Steiner’s Tree Process Terminated
Halting State ; ing Challenges
"Discrete” Mathematics Calculated Bets
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The Movie Star Scheduling Problem

* Input: A set / of nintervals on the line.

* Output: What is the largest subset of
mutually non-overlapping intervals that can
be selected from /?

 Give an algorithm to solve the problem?
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Earliest Job First

- Start working as soon as there is work
available:

« EarliestJobFirst(l)

o Accept the earliest starting job j from / that does
not overlap any previously accepted job, and
repeat until no more such jobs remain.

« Is this algorithm correct?
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First Job to Complete

» Take the job with the earliest completion
date:
« OptimalScheduling(l)

o While(/ # @) do
- Accept job j with the earliest completion date.
- Delete j, and whatever intersects j from /.

« Is this algorithm correct?
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Demonstrating Incorrectness

 Searching for counterexamples is the best
way to disprove the correctness of a
heuristic.

e Think about all small examples.

» Think about examples with ties on your
decision criteria (e.g. pick the nearest point).

« Think about examples with extremes of big
and small.
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Induction and Recursion

« Failure to find a counterexample to a given
algorithm does not mean ‘it is obvious” that
the algorithm is correct.

» Mathematical induction is a very useful
method for proving the correctness of
recursive algorithms.

« Recursion and induction are the same basic
idea: (1) basis case, (2) general assumption,
(3) general case.
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Best Case, Average Case, Worst
Case, Oh My!

* How can we modify almost any algorithm to
have a good best-case running time?

« Sorting Example.

» Traveling salesman example.

A trick used by many!
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Best Case

» Too easy to cheat with best case.

* We do not rely it on much.
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Average Case

» Usually very hard to compute the average
running time.

« Very time consuming.
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Worst Case

 Fairly easy to analyze.
 Often close to the average running time.

» More informative.
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Exact Analysis is Hard

- Best, average, and worst case complexity of
an algorithm is a numerical function of the
size of the instances.
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Exact Analysis is Hard

« It is difficult to work with exactly because it
is typically very complicated.

« ltis cleaner and easier to talk about upper
and lower bounds of the function.

* Remember that we ignore constants.

o This makes sense since running our algorithm
on a machine that is twice as fast will affect the
running time by a multiplicative constant of 2, we
are going to have to ignore constant factors
anyway.
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Asymptotic Notation

» Asymptotic notation (O, ©, Q) are the best
that we can practically do to deal with the
complexity of functions.
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Bounding Functions

* g(n) = O(f(n)) means C x f(n) is an upper
bound on g(n).

* g(n) = Q(f(n)) means C x f(n) is a lower
bound on g(n).

* g(n) = O(f(n)) means C, x f(n) is an upper
bound on g(n) and C, x f(n) is a lower bound
on g(n).

C, C,, and C, are all constants independent of
n.
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Examples of O, Q, and ©

~ > a L > .

@ ®) ©
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Formal Definitions - Big Oh

o S(m)=0(g() if there are positive constants #,
and ¢ such that to the right of ,, the value of
f(n) always lies on or below c.g(n).

 Think of the equality (=) as meaning in the
set of functions.
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Formal Definitions - Big Omega
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Formal Definitions — Big Theta
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Logarithms

« It is important to understand deep in your
bones what logarithms are and where they
come from.

* A logarithm is simply an inverse exponential
function. Saying b* =y is equivalent to
saying that x = log, y.
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Logarithms

« Exponential functions, like the amount owed
on a n year mortgage at an interest rate of ¢
% per year, are functions which grow
distressingly fast, as anyone who has tried to
pay off a mortgage knows.

» Thus inverse exponential functions, ie.
logarithms, grow refreshingly slowly.
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Examples of Logarithmic Functions

« Binary search is an example of an O(Ig n)
algorithm. After each comparison, we can
throw away half the possible number of
keys.

» Thus twenty comparisons suffice to find any
name in the million-name Manhattan phone
book!

« If you have an algorithm which runs in O(lg
n) time, take it, because this is blindingly fast
even on very large instances.
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Another Sorting Algorithm

* What was the running time of insertion sort?

» Can we do better?
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Designing Algorithms

« Many ways to design an algorithm:

o Incremental: This is what we did with insertion sort.
Having sorted the subarray, we insert a single element in
its correct position.

o

Divide and Conquer: Here the problem is broken up into
subproblems that are similar to the original problem but
smaller in size. The subproblems are solved recursively
then combined to give a solution to the original problem.
Merge sort is an example of a divide and conquer
algorithm.
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Divide and Conquer

« Divide the problem into a number of
subproblems

« Conquer the subproblems by solving them
recursively

« Combine the subproblem solutions to give a
solution to the original problem
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Merge Sort

» Merge Sort is an example of a divide and conquer
algorithm

MERGE-SORT (A, p, r)

V p & r are indices into the array (p < r)

if p<r VCheck for base case
then g < |[(p + r) / 2] VDivide
MERGE-SORT (A, p, 9) VConquer

MERGE-SORT (A, g + 1, r) VConquer
MERGE (A, p, 49, r) VCombine
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Example

* How would the following array (n=11) be sorted?
Since we are sorting the full array, p=1 and r = 11.

[s[7l2e[+]¢[7]3]s][2[]

* What would the initial call to MERGE-SORT look
like?

« What would the next call to MERGE-SORT look
like?

« What would the one after that look like?
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The Merge Procedure

 Input: Array A and indices p, g, r such that
opsq<r

o Subarray A[p..q] is sorted and subarray A[g+1..r]
is sorted. Neither subarray is empty

« Output: The two subarrays are merged into
a single sorted subarray in A[p..r]
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The Merge Procedure

n<—q-p+l
n—r-gq
create arrays L[l.n+1]and R[l.n, +1]
for i<1 to n
do L[i]< Alp+i-1]
for j<1 to n,
do R[j] <= Alg+j]
L{n +1] <= »
R[n, +1] < =
i1
je=1
for k< p to r
do if L[i]=R[j]
then A[k]< L[i]
i—i+l
else A(k]< R[j]
jeJ+l
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Example

« A call of MERGE(A, 1, 3, 5) where the array
is:
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For Next Time

* Read Chapter 3 from the book.
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