
1

1

Selecting the Right Jobs

•  A movie star wants to the select the
maximum number of starring roles such that
no two jobs require his presence at the same
time.

CS380 Algorithm Design and Analysis

2

The Movie Star Scheduling Problem

•  Input: A set I of n intervals on the line.

•  Output: What is the largest subset of
mutually non-overlapping intervals that can
be selected from I?

•  Give an algorithm to solve the problem?

CS380 Algorithm Design and Analysis

3

Earliest Job First

•  Start working as soon as there is work
available:

•  EarliestJobFirst(I)
o  Accept the earliest starting job j from I that does

not overlap any previously accepted job, and
repeat until no more such jobs remain.

•  Is this algorithm correct?

CS380 Algorithm Design and Analysis

2

4

First Job to Complete

•  Take the job with the earliest completion
date:

•  OptimalScheduling(I)
o  While(I ≠ Ø) do

  Accept job j with the earliest completion date.
  Delete j, and whatever intersects j from I.

•  Is this algorithm correct?

CS380 Algorithm Design and Analysis

5

Demonstrating Incorrectness

•  Searching for counterexamples is the best
way to disprove the correctness of a
heuristic.

•  Think about all small examples.

•  Think about examples with ties on your
decision criteria (e.g. pick the nearest point).

•  Think about examples with extremes of big
and small.

CS380 Algorithm Design and Analysis

6

Induction and Recursion

•  Failure to find a counterexample to a given
algorithm does not mean “it is obvious” that
the algorithm is correct.

•  Mathematical induction is a very useful
method for proving the correctness of
recursive algorithms.

•  Recursion and induction are the same basic
idea: (1) basis case, (2) general assumption,
(3) general case.

CS380 Algorithm Design and Analysis

3

7

Best Case, Average Case, Worst
Case, Oh My!

•  How can we modify almost any algorithm to
have a good best-case running time?

•  Sorting Example.

•  Traveling salesman example.

•  A trick used by many!

CS380 Algorithm Design and Analysis

8

Best Case

•  Too easy to cheat with best case.

•  We do not rely it on much.

CS380 Algorithm Design and Analysis

9

Average Case

•  Usually very hard to compute the average
running time.

•  Very time consuming.

CS380 Algorithm Design and Analysis

4

10

Worst Case

•  Fairly easy to analyze.

•  Often close to the average running time.

•  More informative.

CS380 Algorithm Design and Analysis

11

Exact Analysis is Hard

•  Best, average, and worst case complexity of
an algorithm is a numerical function of the
size of the instances.

CS380 Algorithm Design and Analysis

12

Exact Analysis is Hard

•  It is difficult to work with exactly because it
is typically very complicated.

•  It is cleaner and easier to talk about upper
and lower bounds of the function.

•  Remember that we ignore constants.
o  This makes sense since running our algorithm

on a machine that is twice as fast will affect the
running time by a multiplicative constant of 2, we
are going to have to ignore constant factors
anyway.

CS380 Algorithm Design and Analysis

5

13

Asymptotic Notation

•  Asymptotic notation (Ο, Θ, Ω) are the best
that we can practically do to deal with the
complexity of functions.

CS380 Algorithm Design and Analysis

14

Bounding Functions

•  g(n) = Ο(f(n)) means C x f(n) is an upper
bound on g(n).

•  g(n) = Ω(f(n)) means C x f(n) is a lower
bound on g(n).

•  g(n) = Θ(f(n)) means C1 x f(n) is an upper
bound on g(n) and C2 x f(n) is a lower bound
on g(n).

C, C1, and C2 are all constants independent of
n.

CS380 Algorithm Design and Analysis

15

Examples of Ο, Ω, and Θ

CS380 Algorithm Design and Analysis

6

16

Formal Definitions – Big Oh

•  if there are positive constants
and such that to the right of , the value of

 always lies on or below .

•  Think of the equality (=) as meaning in the
set of functions.

CS380 Algorithm Design and Analysis

))(()(ngnf Ο= 0n
c

)(nf)(. ngc
0n

17

Formal Definitions – Big Omega

CS380 Algorithm Design and Analysis

18

Formal Definitions – Big Theta

CS380 Algorithm Design and Analysis

7

19

Logarithms

•  It is important to understand deep in your
bones what logarithms are and where they
come from.

•  A logarithm is simply an inverse exponential
function. Saying bx = y is equivalent to
saying that x = logb y.

CS380 Algorithm Design and Analysis

20

Logarithms

•  Exponential functions, like the amount owed
on a n year mortgage at an interest rate of c
% per year, are functions which grow
distressingly fast, as anyone who has tried to
pay off a mortgage knows.

•  Thus inverse exponential functions, ie.
logarithms, grow refreshingly slowly.

CS380 Algorithm Design and Analysis

21

Examples of Logarithmic Functions

•  Binary search is an example of an O(lg n)
algorithm. After each comparison, we can
throw away half the possible number of
keys.

•  Thus twenty comparisons suffice to find any
name in the million-name Manhattan phone
book!

•  If you have an algorithm which runs in O(lg
n) time, take it, because this is blindingly fast
even on very large instances.

CS380 Algorithm Design and Analysis

8

22

Another Sorting Algorithm

•  What was the running time of insertion sort?

•  Can we do better?

CS380 Algorithm Design and Analysis

23

Designing Algorithms

•  Many ways to design an algorithm:"
o  Incremental: This is what we did with insertion sort.

Having sorted the subarray, we insert a single element in
its correct position.!

o  Divide and Conquer: Here the problem is broken up into
subproblems that are similar to the original problem but
smaller in size. The subproblems are solved recursively
then combined to give a solution to the original problem.
Merge sort is an example of a divide and conquer
algorithm."

CS380 Algorithm Design and Analysis

24

Divide and Conquer

•  Divide the problem into a number of
subproblems!

•  Conquer the subproblems by solving them
recursively!

•  Combine the subproblem solutions to give a
solution to the original problem

CS380 Algorithm Design and Analysis

9

25

Merge Sort

•  Merge Sort is an example of a divide and conquer
algorithm"
MERGE-SORT(A, p, r)

∇ p & r are indices into the array (p < r)

if p < r ∇Check for base case

 then q ← ⎣(p + r) / 2⎦ ∇Divide

 MERGE-SORT(A, p, q) ∇Conquer

 MERGE-SORT(A, q + 1, r) ∇Conquer

 MERGE(A, p, q, r) ∇Combine

CS380 Algorithm Design and Analysis

26

Example"

•  How would the following array (n=11) be sorted?
Since we are sorting the full array, p=1 and r = 11."

•  What would the initial call to MERGE-SORT look
like?"

•  What would the next call to MERGE-SORT look
like?"

•  What would the one after that look like?

4 7 2 6 1 4 7 3 5 2 6

CS380 Algorithm Design and Analysis

27

The Merge Procedure

•  Input: Array A and indices p, q, r such that"
o  p ≤ q < r"
o  Subarray A[p..q] is sorted and subarray A[q+1..r]

is sorted. Neither subarray is empty"

•  Output: The two subarrays are merged into
a single sorted subarray in A[p..r]"

CS380 Algorithm Design and Analysis

10

28

The Merge Procedure

CS380 Algorithm Design and Analysis

29

Example

•  A call of MERGE(A, 1, 3, 5) where the array
is:"

3 5 7 2 6

CS380 Algorithm Design and Analysis

30 CS380 Algorithm Design and Analysis

For Next Time

•  Read Chapter 3 from the book.

