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Selecting the Right Jobs 

•  A movie star wants to the select the 
maximum number of starring roles such that 
no two jobs require his presence at the same 
time. 
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The Movie Star Scheduling Problem 

•  Input: A set I of n intervals on the line. 

•  Output: What is the largest subset of 
mutually non-overlapping intervals that can 
be selected from I? 

•  Give an algorithm to solve the problem? 
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Earliest Job First 

•  Start working as soon as there is work 
available: 

•  EarliestJobFirst(I) 
o  Accept the earliest starting job j from I that does 

not overlap any previously accepted job, and 
repeat until no more such jobs remain. 

•  Is this algorithm correct? 
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First Job to Complete 

•  Take the job with the earliest completion 
date: 

•  OptimalScheduling(I) 
o  While(I ≠ Ø) do 

  Accept job j with the earliest completion date. 
  Delete j, and whatever intersects j from I. 

•  Is this algorithm correct? 
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Demonstrating Incorrectness 

•  Searching for counterexamples is the best 
way to disprove the correctness of a 
heuristic. 

•   Think about all small examples. 

•   Think about examples with ties on your 
decision criteria (e.g. pick the nearest point). 

•   Think about examples with extremes of big 
and small. 
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Induction and Recursion 

•  Failure to find a counterexample to a given 
algorithm does not mean “it is obvious” that 
the algorithm is correct. 

•  Mathematical induction is a very useful 
method for proving the correctness of 
recursive algorithms. 

•  Recursion and induction are the same basic 
idea: (1) basis case, (2) general assumption, 
(3) general case. 
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Best Case, Average Case, Worst 
Case, Oh My! 

•  How can we modify almost any algorithm to 
have a good best-case running time? 

•  Sorting Example. 

•  Traveling salesman example. 

•  A trick used by many! 
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Best Case 

•  Too easy to cheat with best case. 

•  We do not rely it on much. 

CS380 Algorithm Design and Analysis 

9 

Average Case 

•  Usually very hard to compute the average 
running time. 

•  Very time consuming. 
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Worst Case 

•  Fairly easy to analyze. 

•  Often close to the average running time. 

•  More informative. 
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Exact Analysis is Hard 

•  Best, average, and worst case complexity of 
an algorithm is a numerical function of the 
size of the instances. 
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Exact Analysis is Hard 

•  It is difficult to work with exactly because it 
is typically very complicated. 

•  It is cleaner and easier to talk about upper 
and lower bounds of the function. 

•  Remember that we ignore constants. 
o  This makes sense since running our algorithm 

on a machine that is twice as fast will affect the 
running time by a multiplicative constant of 2, we 
are going to have to ignore constant factors 
anyway. 
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Asymptotic Notation 

•  Asymptotic notation (Ο, Θ, Ω) are the best 
that we can practically do to deal with the 
complexity of functions. 
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Bounding Functions 

•  g(n) = Ο(f(n)) means C x f(n) is an upper 
bound on g(n). 

•   g(n) = Ω(f(n)) means C x f(n) is a lower 
bound on g(n). 

•   g(n) = Θ(f(n)) means C1 x  f(n) is an upper 
bound on g(n) and C2 x f(n) is a lower bound 
on g(n). 

C, C1, and C2 are all constants independent of 
n. 
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Examples of Ο, Ω, and Θ 
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Formal Definitions – Big Oh 

•                     if there are positive constants 
and    such that to the right of    , the value of 

   always lies on or below          . 

•  Think of the equality (=) as meaning in the 
set of functions. 
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Formal Definitions – Big Omega 
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Formal Definitions – Big Theta 
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Logarithms 

•  It is important to understand deep in your 
bones what logarithms are and where they 
come from. 

•  A logarithm is simply an inverse exponential 
function. Saying bx = y is equivalent to 
saying that x = logb y. 
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Logarithms 

•  Exponential functions, like the amount owed 
on a n year mortgage at an interest rate of c
% per year, are functions which grow 
distressingly fast, as anyone who has tried to 
pay off a mortgage knows. 

•  Thus inverse exponential functions, ie. 
logarithms, grow refreshingly slowly. 
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Examples of Logarithmic Functions 

•  Binary search is an example of an O(lg n) 
algorithm. After each comparison, we can 
throw away half the possible number of 
keys.  

•  Thus twenty comparisons suffice to find any 
name in the million-name Manhattan phone 
book! 

•  If you have an algorithm which runs in O(lg 
n) time, take it, because this is blindingly fast 
even on very large instances. 
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Another Sorting Algorithm 

•  What was the running time of insertion sort? 

•  Can we do better? 
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Designing Algorithms 

•  Many ways to design an algorithm:"
o  Incremental: This is what we did with insertion sort. 

Having sorted the subarray, we insert a single element in 
its correct position.!

o  Divide and Conquer: Here the problem is broken up into 
subproblems that are similar to the original problem but 
smaller in size. The subproblems are solved recursively 
then combined to give a solution to the original problem. 
Merge sort is an example of a divide and conquer 
algorithm."
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Divide and Conquer 

•  Divide the problem into a number of 
subproblems!

•  Conquer the subproblems by solving them 
recursively!

•  Combine the subproblem solutions to give a 
solution to the original problem 
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Merge Sort 

•  Merge Sort is an example of a divide and conquer 
algorithm"
MERGE-SORT(A, p, r) 

∇ p & r are indices into the array (p < r) 

if p < r              ∇Check for base case 

  then q ← ⎣(p + r) / 2⎦    ∇Divide 

    MERGE-SORT(A, p, q)     ∇Conquer 

    MERGE-SORT(A, q + 1, r) ∇Conquer 

    MERGE(A, p, q, r)       ∇Combine 
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Example"

•  How would the following array (n=11) be sorted? 
Since we are sorting the full array, p=1 and r = 11."

•  What would the initial call to MERGE-SORT look 
like?"

•  What would the next call to MERGE-SORT look 
like?"

•  What would the one after that look like? 

4 7 2 6 1 4 7 3 5 2 6 
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The Merge Procedure 

•  Input: Array A and indices p, q, r such that"
o  p ≤ q < r"
o  Subarray A[p..q] is sorted and subarray A[q+1..r] 

is sorted. Neither subarray is empty"

•  Output: The two subarrays are merged into 
a single sorted subarray in A[p..r]"
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The Merge Procedure 
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Example 

•  A call of MERGE(A, 1, 3, 5) where the array 
is:"

3 5 7 2 6 
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For Next Time 

•  Read Chapter 3 from the book. 


