

Data Compression

- Huffman codes are used for data compression. The motivations for data compression are obvious: reducing time to transmit large files, and reducing the space required to store them on disk or tape.
- The code was devised by Huffman as part of a course assignment at MIT in the early 1950s.

CS380 Algorithm Design and Analysis

Goal

4/30/09

4/30/09

- Huffman coding is a technique for assigning binary sequences to elements of an alphabet.
- The goal of an optimal code is to assign the minimum number of bits to each symbol (letter) in the alphabet.

CS380 Algorithm Design and Analysis

File Size

- Suppose that you have a file of 100K characters.
- To keep the example simple, suppose that each character is one of the 8 letters from a through h.
- How much space is required to store this file?

CS380 Algorithm Design and Analysis

File Size

4/30/09

4/30/09

- · Can we do better?
- Suppose that we have more information about the file: the *frequency with which each* character appears.
- Use a variable length code instead of a fixed length code
- · Use fewer bits to store common characters

CS380 Algorithm Design and Analysis

5

Example								
	А	в	С	D	E	F	G	Н
Frequency	45K	13K	12K	16K	9K	5K	0K	0K
Fixed length code	000	001	010	011	100	101	110	11
Variable length code								
•How much space variable-length of	ce will code ta	the ke?	file	stor	ed ι	usin	g	
 How much space variable-length of What is the save 	ce will code ta /ing or	the ke? corr	file :	stor ssic	ed u on ra	usin atio	n?	
 How much sparvariable-length of What is the save 	ce will code ta /ing or	the ke? corr	file :	stor ssic	ed u on ra	usin atio	n?	

Decoding

 How can 110001001101 be decoded using the variable length code from the previous slide?

Huffman Trees

4/30/09

4/30/09

4/30/09

• We can represent the decoding algorithm by a binary tree, where each edge represents either 0 or 1, and each leaf corresponds to the sequence of 0s and 1s traversed to reach it, ie a particular code.

CS380 Algorithm Design and Analysis

CS380 Algorithm Design and Analysis

Fixed Length Code Tree

CS380 Algorithm Design and Analysis

HUFFMAN(C)

has a frequency

Character	Freq	Fixed Code	Bits	Variable code	Bits
А	10	000	30		
Е	15	001	45		
I	12	010	36		
S	3	011	9		
Т	4	100	12		
SP	13	101	39		
NL	1	110	3		

Entropy

4/30/09

- Entropy is a measure of the amount of uncertainty or randomness associated with a random variable; that is, it is a measure of the amount of information on the average required to describe the variable.
- In compression, entropy is a measure of how much information is actually in the text being compressed

$$-\sum_{x_i} p(x) \log_2 p(x)$$

CS380 Algorithm Design and Analysis

13

