
1

Dynamic Programming:
The Edit Distance Problem

http://books.google.com/books?id
=lcnSCDcDocMC

Chapter 11

4/27/09 CS380 Algorithm Design and Analysis

2

Dynamic Programming

• What do you remember about Dynamic
Programming?

4/27/09 CS380 Algorithm Design and Analysis

3

Greedy vs. Dynamic

• Greedy algorithms focus on making the best
local choice at each decision point

• Dynamic programming gives us a way to
design custom algorithms which
systematically search all possibilities (thus
guaranteeing correctness) while storing
results to avoid recomputing (thus providing
efficiency)

4/27/09 CS380 Algorithm Design and Analysis

4

Dynamic Programming

• Dynamic programming algorithms are
defined by recursive algorithms/functions
that describe the solution to the entire
problem in terms of solutions to smaller
problems

• Efficiency in any such recursive algorithm
requires storing enough information to avoid
repeating computations we have done
before

4/27/09 CS380 Algorithm Design and Analysis

5

Dynamic Programming

• Dynamic programming is a technique for efficiently
implementing a recursive algorithm by storing
partial results

• The trick is to see that the naive recursive
algorithm repeatedly computes the same
subproblems over and over and over again. If so,
storing the answers to them in a table instead of
recomputing can lead to an efficient algorithm

• Thus we must first hunt for a correct recursive
algorithm - later we can worry about speeding it up
by using a results matrix

4/27/09 CS380 Algorithm Design and Analysis

6

Edit Distance

4/27/09 CS380 Algorithm Design and Analysis

• Levenshtein (1966) introduced edit distance
between two strings as the minimum number of
elementary operations (insertions, deletions,
and substitutions) to transform one string into
the other

7

Edit Distance

• Misspellings and changes in word usage (``Thou
shalt not kill'' morphs into ``You should not
murder.'') make approximate pattern matching an
important problem

• If we are to deal with inexact string matching, we
must first define a cost function telling us how far
apart two strings are, i.e., a distance measure
between pairs of strings. A reasonable distance
measure minimizes the cost of the changes which
have to be made to convert one string to another

4/27/09 CS380 Algorithm Design and Analysis

8

Edit Distance

• There are three natural types of changes:
o Substitution - Change a single character from

pattern to a different character in text , such as
changing ``shot'' to ``spot''.

o Insertion - Insert a single character into pattern
to help it match text , such as changing ``ago'' to
``agog''.

o Deletion - Delete a single character from pattern
to help it match text , such as changing ``hour''
to ``our''.

4/27/09 CS380 Algorithm Design and Analysis

9

• What is the minimum distance between:
o cat and cast

o brain and barn

4/27/09 CS380 Algorithm Design and Analysis

Examples

10

Applications

• File Revision: The Unix command diff

• Spelling Correction

• Plagiarism Detection

• Molecular Biology: distance between two
DNA sequences (alphabet is A, C, G, T)

4/27/09 CS380 Algorithm Design and Analysis

11

Output

• We can compute the edit distance with recursive
algorithm using the observation that the last
character in the string must either be matched,
substituted, inserted, or deleted.

• If we knew the cost of editing the three pairs of
smaller strings, we could decide which option leads
to the best solution and choose that option
accordingly.

• We can learn this cost, through the magic of
recursion

4/27/09 CS380 Algorithm Design and Analysis

12

Recursive Algorithm

4/27/09 CS380 Algorithm Design and Analysis

13

Helper Functions

int match(char c, char d)

{

 if (c == d) return 0;

 else return 1;

}

int indel(char c)

{

 return 1;

}
4/27/09 CS380 Algorithm Design and Analysis

14

Verifying string_compare

4/27/09 CS380 Algorithm Design and Analysis

• s = cast

• t = cat

• i = 4

• j = 3

15

What is the Problem then?

4/27/09 CS380 Algorithm Design and Analysis

16

Speeding it up

• The important observation is that there can
only be |s|*|t| possible unique recursive calls,
since there are only that many distinct (i,j)
pairs to serve as the parameters of recursive
calls.

• By storing the values for each of these (i,j)
pairs in a table, we can avoid recomputing
them and just look them up as needed.

4/27/09 CS380 Algorithm Design and Analysis

17

Dynamic Programming Table

typedef struct

{

 int cost;

 int parent;

} cell;

cell m[MAXLEN+1][MAXLEN+1];

4/27/09 CS380 Algorithm Design and Analysis

18

DP Edit Distance

4/27/09 CS380 Algorithm Design and Analysis

19

Helper Function

4/27/09 CS380 Algorithm Design and Analysis

void row_init(int i)

{

 m[0][i].cost = i;

 if(i > 0)

 m[0][i].parent = INSERT;

 else

 m[0][i].parent = -1;

}

20

Helper Function

4/27/09 CS380 Algorithm Design and Analysis

void column_init (int i)

{

 m[i][0].cost = i;

 if(i > 0)

 m[i][0].parent = DELETE;

 else

 m[0][i].parent = -1;

}

21

Helper Function

4/27/09 CS380 Algorithm Design and Analysis

void goal_cell(char *s, char *t,
int *i, int *j)

{

 *j = strlen(s) - 1;

 *i = strlen(t) - 1;

}

22

Example

4/27/09 CS380 Algorithm Design and Analysis

T

S

A

C

-

TAC-

23

Example

4/27/09 CS380 Algorithm Design and Analysis

• Where is the shortest distance?

• How can we construct the path?

24

Reconstructing the Path

4/27/09 CS380 Algorithm Design and Analysis

25

Your Turn

• What is the edit distance between the
following two DNA sequences:
o CTACCG

o TACATG

• How can one be converted to the other?

