Dynamic Programming:
The Edit Distance Problem
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Dynamic Programming

* What do you remember about Dynamic
Programming?
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Greedy vs. Dynamic

Greedy algorithms focus on making the best
local choice at each decision point

Dynamic programming gives us a way to
design custom algorithms which
systematically search all possibilities (thus
guaranteeing correctness) while storing
results to avoid recomputing (thus providing
efficiency)
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Dynamic Programming

Dynamic programming algorithms are
defined by recursive algorithms/functions
that describe the solution to the entire
problem in terms of solutions to smaller
problems

Efficiency in any such recursive algorithm
requires storing enough information to avoid
repeating computations we have done
before
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Dynamic Programming

Dynamic programming is a technique for efficiently
implementing a recursive algorithm by storing
partial results

The trick is to see that the naive recursive
algorithm repeatedly computes the same
subproblems over and over and over again. If so,
storing the answers to them in a table instead of
recomputing can lead to an efficient algorithm

Thus we must first hunt for a correct recursive
algorithm - later we can worry about speeding it up
by using a results matrix

4/27/09 CS380 Algorithm Design and Analysis 5

Edit Distance

Levenshtein (1966) introduced edit distance
between two strings as the minimum number of
elementary operations (insertions, deletions,
and substitutions) to transform one string into
the other
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Edit Distance

Misspellings and changes in word usage (" Thou
shalt not kill" morphs into ""You should not
murder.") make approximate pattern matching an
important problem

If we are to deal with inexact string matching, we
must first define a cost function telling us how far
apart two strings are, i.e., a distance measure
between pairs of strings. A reasonable distance
measure minimizes the cost of the changes which
have to be made to convert one string to another
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Edit Distance

There are three natural types of changes:

Substitution - Change a single character from
pattern to a different character in text , such as
changing "“shot" to “"spot".

Insertion - Insert a single character into pattern
to help it match text , such as changing "ago" to
“"agog".

Deletion - Delete a single character from pattern

to help it match text , such as changing "“hour"
to “our".
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Examples

 What is the minimum distance between:
o cat and cast

o brain and barn
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Applications

File Revision: The Unix command diff

Spelling Correction

Plagiarism Detection

Molecular Biology: distance between two
DNA sequences (alphabetis A, C, G, T)
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Output

* We can compute the edit distance with recursive

algorithm using the observation that the last

character in the string must either be matched,

substituted, inserted, or deleted.

« If we knew the cost of editing the three pairs of

smaller strings, we could decide which option leads

to the best solution and choose that option
accordingly.

« We can learn this cost, through the magic of
recursion
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#define MATCH O (* enumerated type symbol for match *)
#define INSERT 1 (* enumerated type symbol for insert *)
#define DELETE 2 (* enumerated type symbol for delete *)
int string_compare(char *s, char *t, int 1, int j)
{
int k; (* counter *)
int opt[3]; (* cost of the three options *)
int lowest_cost; (* lowest cost *)
if (1 ==0) return(j * indel(’ *));
if (j ==0) return(i * indel(’ *));
opt[MATCH] = string_compare(s.t.i-1,j-1) + match(s[i].t[j]);
opt[INSERT] = string_compare(s,tij-1) + indel(t[j]);
opt[DELETE] = string_compare(s.t,i-1.j) + indel(s[i]);
lowest_cost = opt[MATCH];
for (k=INSERT; k<=DELETE; k++)
if (opt[k] < lowest_cost) lowest_cost = opt[k];
return( lowest_cost );
}
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Helper Functions

int match(char c, char d)

{
if (¢ == d) return O;

else return 1;

int indel (char c)
return 1;
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Verifying string_compare

* s = cast
* t=cat
ci=4
-j=3
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What is the Problem then?
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Speeding it up

The important observation is that there can
only be |s|*|t| possible unique recursive calls,
since there are only that many distinct (i,))
pairs to serve as the parameters of recursive
calls.

By storing the values for each of these (i,j)

pairs in a table, we can avoid recomputing
them and just look them up as needed.
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Dynamic Programming Table

typedef struct
{
int cost;
int parent;
} cell;

cell m[MAXLEN+1] [MAXLEN+1];
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DP Edit Distance

int string_compare(char *s, char *t)

intijk; (* counters *)
int opt[3]; (* cost of the three options *)

for (i=0; i<MAXLEN: i++) {
row_init(i);
column_init(i);

}

for (i=1; i<strlen(s); i++)
for (j=1; j<strlen(t); j++) {
opt[MATCH] = m[i-1][j-1].cost + match(s[i].t[j]):
opt[INSERT] = ml[i][j-1].cost + indel(t[j]);
opt[DELETE] = m[i-1][j].cost + indel(s[i]);

m[i][j].cost = optfMATCH];
m[i][j].parent = MATCH;
for (k=INSERT; k<<=DELETE; k++)
if (opt[k] < ml[i][j].cost) {
m[i][j].cost = opt[k];
m[i][j].parent =k;
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Helper Function

void row_init(int i)
{

m[0] [i] .cost = 1i;

if(i > 0)
m[0] [1i] .parent = INSERT;
else
m[O0] [i] .parent = -1;
}
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Helper Function

void column_init (int i)
{

m[i] [0] .cost = 1i;

if(i > 0)

m[i] [0] .parent = DELETE;
else

m[0] [1i] .parent = -1;
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Helper Function

void goal cell(char *s, char *t,
int *i, int *j)

{
*j = strlen(s) - 1;
*i = strlen(t) - 1;
}
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Example
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Example

* Where is the shortest distance?

« How can we construct the path?
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Reconstructing the Path
reconstruct_path(char *s, char *t, int 1, int j)

if (m[i][j].parent == -1) return;

if (m[i][j].parent == MATCH) {
reconstruct_path(s.ti-1j-1);
match_out(s, t, 1, j);
return;

}

if (m[i][j].parent == INSERT) {
reconstruct_path(s.tij-1);
insert_out(t.j);
return;

}

if (m[i][j].parent == DELETE) {
reconstruct_path(s.ti-1,));
delete_out(s.i);
return;

}

}
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Your Turn

* What is the edit distance between the
following two DNA sequences:

o CTACCG
o TACATG

» How can one be converted to the other?
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