Dynamic Programming:
The Edit Distance Problem

Chapter 11

4/27/09 CS380 Algorithm Design and Analysis

Dynamic Programming

* What do you remember about Dynamic
Programming?

4/27/09 CS380 Algorithm Design and Analysis




Greedy vs. Dynamic

Greedy algorithms focus on making the best
local choice at each decision point

Dynamic programming gives us a way to
design custom algorithms which
systematically search all possibilities (thus
guaranteeing correctness) while storing
results to avoid recomputing (thus providing
efficiency)

4/27/09 CS380 Algorithm Design and Analysis 3

Dynamic Programming

Dynamic programming algorithms are
defined by recursive algorithms/functions
that describe the solution to the entire
problem in terms of solutions to smaller
problems

Efficiency in any such recursive algorithm
requires storing enough information to avoid
repeating computations we have done
before

4/27/09 CS380 Algorithm Design and Analysis 4




Dynamic Programming

Dynamic programming is a technique for efficiently
implementing a recursive algorithm by storing
partial results

The trick is to see that the naive recursive
algorithm repeatedly computes the same
subproblems over and over and over again. If so,
storing the answers to them in a table instead of
recomputing can lead to an efficient algorithm

Thus we must first hunt for a correct recursive
algorithm - later we can worry about speeding it up
by using a results matrix

4/27/09 CS380 Algorithm Design and Analysis 5

Edit Distance

Levenshtein (1966) introduced edit distance
between two strings as the minimum number of
elementary operations (insertions, deletions,
and substitutions) to transform one string into
the other

4/27/09 CS380 Algorithm Design and Analysis 6




Edit Distance

Misspellings and changes in word usage (" Thou
shalt not kill" morphs into ""You should not
murder.") make approximate pattern matching an
important problem

If we are to deal with inexact string matching, we
must first define a cost function telling us how far
apart two strings are, i.e., a distance measure
between pairs of strings. A reasonable distance
measure minimizes the cost of the changes which
have to be made to convert one string to another

4/27/09 CS380 Algorithm Design and Analysis 7

Edit Distance

There are three natural types of changes:

Substitution - Change a single character from
pattern to a different character in text , such as
changing "“shot" to “"spot".

Insertion - Insert a single character into pattern
to help it match text , such as changing "ago" to
“"agog".

Deletion - Delete a single character from pattern

to help it match text , such as changing "“hour"
to “our".

4/27/09 CS380 Algorithm Design and Analysis 8




Examples

 What is the minimum distance between:
o cat and cast

o brain and barn

4/27/09 CS380 Algorithm Design and Analysis 9

Applications

File Revision: The Unix command diff

Spelling Correction

Plagiarism Detection

Molecular Biology: distance between two
DNA sequences (alphabetis A, C, G, T)

4/27/09 CS380 Algorithm Design and Analysis 10




Output

* We can compute the edit distance with recursive

algorithm using the observation that the last

character in the string must either be matched,

substituted, inserted, or deleted.

« If we knew the cost of editing the three pairs of

smaller strings, we could decide which option leads

to the best solution and choose that option
accordingly.

« We can learn this cost, through the magic of
recursion

4/27/09 CS380 Algorithm Design and Analysis 11
#define MATCH O (* enumerated type symbol for match *)
#define INSERT 1 (* enumerated type symbol for insert *)
#define DELETE 2 (* enumerated type symbol for delete *)
int string_compare(char *s, char *t, int 1, int j)
{
int k; (* counter *)
int opt[3]; (* cost of the three options *)
int lowest_cost; (* lowest cost *)
if (1 ==0) return(j * indel(’ *));
if (j ==0) return(i * indel(’ *));
opt[MATCH] = string_compare(s.t.i-1,j-1) + match(s[i].t[j]);
opt[INSERT] = string_compare(s,tij-1) + indel(t[j]);
opt[DELETE] = string_compare(s.t,i-1.j) + indel(s[i]);
lowest_cost = opt[MATCH];
for (k=INSERT; k<=DELETE; k++)
if (opt[k] < lowest_cost) lowest_cost = opt[k];
return( lowest_cost );
}
4/27/09 CS380 Algorithm Design and Analysis 12




Helper Functions

int match(char c, char d)

{
if (¢ == d) return O;

else return 1;

int indel (char c)
return 1;
4/27/09 CS380 Algorithm Design and Analysis 13

Verifying string_compare

* s = cast
* t=cat
ci=4
-j=3

4/27/09 CS380 Algorithm Design and Analysis




What is the Problem then?

4/27/09 CS380 Algorithm Design and Analysis 15

Speeding it up

The important observation is that there can
only be |s|*|t| possible unique recursive calls,
since there are only that many distinct (i,))
pairs to serve as the parameters of recursive
calls.

By storing the values for each of these (i,j)

pairs in a table, we can avoid recomputing
them and just look them up as needed.

4/27/09 CS380 Algorithm Design and Analysis 16




Dynamic Programming Table

typedef struct
{
int cost;
int parent;
} cell;

cell m[MAXLEN+1] [MAXLEN+1];

4/27/09 CS380 Algorithm Design and Analysis

DP Edit Distance

int string_compare(char *s, char *t)

intijk; (* counters *)
int opt[3]; (* cost of the three options *)

for (i=0; i<MAXLEN: i++) {
row_init(i);
column_init(i);

}

for (i=1; i<strlen(s); i++)
for (j=1; j<strlen(t); j++) {
opt[MATCH] = m[i-1][j-1].cost + match(s[i].t[j]):
opt[INSERT] = ml[i][j-1].cost + indel(t[j]);
opt[DELETE] = m[i-1][j].cost + indel(s[i]);

m[i][j].cost = optfMATCH];
m[i][j].parent = MATCH;
for (k=INSERT; k<<=DELETE; k++)
if (opt[k] < ml[i][j].cost) {
m[i][j].cost = opt[k];
m[i][j].parent =k;

4/27/09 CS380 Algorithm Design and Analysis




Helper Function

void row_init(int i)
{

m[0] [i] .cost = 1i;

if(i > 0)
m[0] [1i] .parent = INSERT;
else
m[O0] [i] .parent = -1;
}
4/27/09 CS380 Algorithm Design and Analysis 19

Helper Function

void column_init (int i)
{

m[i] [0] .cost = 1i;

if(i > 0)

m[i] [0] .parent = DELETE;
else

m[0] [1i] .parent = -1;

4/27/09 CS380 Algorithm Design and Analysis

20




Helper Function

void goal cell(char *s, char *t,
int *i, int *j)

{
*j = strlen(s) - 1;
*i = strlen(t) - 1;
}
4/27/09 CS380 Algorithm Design and Analysis 21
Example

4/27/09 CS380 Algorithm Design and Analysis

22




Example

* Where is the shortest distance?

« How can we construct the path?

4/27/09 CS380 Algorithm Design and Analysis 23
Reconstructing the Path
reconstruct_path(char *s, char *t, int 1, int j)

if (m[i][j].parent == -1) return;

if (m[i][j].parent == MATCH) {
reconstruct_path(s.ti-1j-1);
match_out(s, t, 1, j);
return;

}

if (m[i][j].parent == INSERT) {
reconstruct_path(s.tij-1);
insert_out(t.j);
return;

}

if (m[i][j].parent == DELETE) {
reconstruct_path(s.ti-1,));
delete_out(s.i);
return;

}

}
4/27/09 CS380 Algorithm Design and Analysis 24




Your Turn

* What is the edit distance between the
following two DNA sequences:

o CTACCG
o TACATG

» How can one be converted to the other?

25




