\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Shortest Paths
- Finding the shortest path between two
nodes comes up in many applications
- Transportation problems
- Motion planning
○ Communication problems
\circ Six degrees of separation!
444409

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Shortest Paths

- In an unweighted graph, the cost of a path is just the number of edges on the shortest paths
- What algorithm have we already covered that can do this? \qquad
\qquad
\qquad
\qquad

[^0]
Shortest Paths Problems

- Input: a directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and a
weight function $w: E \rightarrow R$
- The weight of a path $p=v_{0}, v_{1}, v_{2}, \ldots, v_{k}$ is
- The weight of the shortest path from u to v is
$\frac{5}{4 / 4109} \quad$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example		
414109		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Variants
- Single Source Shortest Paths
- Single Destination Shortest Paths
- Single Pair Shortest Path
- All Pairs Shortest Paths
414109

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Negative Weight Edges
- Fine, as long as no negative-weight cycles
are reachable from the source
$\frac{\text { css30 Aloorithm Dosign and Anayysis }}{414409} \quad$

Output	
For each vertex v in V :$\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})$	
- $\pi[\mathrm{v}]=$ predecessor of v on a shortest path from s	

Initialization	
- All the shortest-paths algorithms start with	
INIT-SINGLE-SOURCE(V,s)	
414109	

Relaxation

- The process of relaxing an edge (u, v)
consists of testing whether we can improve
the shortest path to v found so far by going
through u and, if so, updating $d[v]$ and $\pi[v]$
$\frac{\text { css880 Algorithm Design and Analysis }}{414109}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Single-Source Shortest-Paths
- For all single-source shortest-paths
algorithms we'll look at:
。 Start by calling INIT-SINGLE-SOURCE
○ Then relax edges
- The algorithms differ in the order and how
many times they relax each edge
$\frac{\text { Cs380 Agoorithm Design and Analysis }}{4141409}$

Bellman-Ford Algorithm
- Allows negative-weight edges
- Computes $\mathrm{d}[\mathrm{v}]$ and $\pi[\mathrm{v}]$ for all v in V
- Returns true if no negative-weight cycles are
reachable from s, false otherwise
444409

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BELLMAN-FORD(V, E, w, s)

\qquad
\qquad
\qquad
\qquad
\qquad

- Time:
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Single-Source Shortest-Paths	
- In a DAG!	
- DAG-SHORTEST-PATHS(V,E,w,s)	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

DIJKSTRA $(\mathrm{V}, \mathrm{W}, \mathrm{w}, \mathrm{s})$

Your Turn

- What is the single-source shortest-path tree starting at a?

\qquad
\qquad
\qquad
\qquad
\qquad

Question

\qquad

- We are running one of these three algorithms on the graph below, where the
\qquad algorithm has already processed the bold- \qquad face edges.
- Prim's for the minimum spanning tree \qquad
- Kruskal's for the minimum spanning tree
- Dijkstra's shortest paths from s \qquad
\qquad
\qquad

Continued

- Which edge would be added next in Prim's algorithm
- Which edge would be added next in Kruskal's algorithm
- Which vertex would be marked next in Dijkstra's algorithm?

[^0]: 4/14/09
 CS380 Algorithm Design and Analysis

