
1

Minimum Spanning Trees

Chapter 23

4/9/09 CS380 Algorithm Design and Analysis

2

Problem

• A town has a set of houses and a set of
roads

• A road connects 2 and only 2 houses

• A road connecting houses u and v has a
repair cost w(u, v)

• Goal: Repair enough (and no more) roads
such that
o Everyone stays connected
o Total repair cost is minimum

4/9/09 CS380 Algorithm Design and Analysis

3

Minimum Spanning Tree

• Model as a graph:
o Undirected graph G = (V, E)
o Weight w(u, v) on each edge (u, v) in E

o Find T that is a subset of E such that
 T connects all vertices, and
 is minimized

4/9/09 CS380 Algorithm Design and Analysis

!
"

=
Tvu

vuwTw

),(

),()(

4

Minimum Spanning Tree

• A spanning tree whose weight is minimum
over all spanning trees is called a minimum
spanning tree

• Example

4/9/09 CS380 Algorithm Design and Analysis

a

a

a

a

a

a a

a

a

10

9

12

8 8
2

11

9
5

61

3 3

7

5

Growing an MST

• Properties of an MST:
o It has |V|-1 edges
o It has no cycles
o It might not be unique

• Building up a Solution
o We will build a set A of edges
o Initially A has no edges
o As we add edges we maintain the invariant:

 Loop Invariant: A is a subset of MST

o Add only edges that maintain the invariant. If A is a
subset of MST, an edge (u, v) is safe for A if and only if
A U {(u,v)} is also a subset of some MST. So, we will
add only safe edges.

4/9/09 CS380 Algorithm Design and Analysis

6

Generic MST Algorithm

• GENERIC-MST(G, w)

• Use loop invariant to show that this
algorithm is correct

4/9/09 CS380 Algorithm Design and Analysis

7

Finding a Safe Edge

• How do we find safe edges?

• Looking at the example below, Edge (c,f)
has the lowest weight of any edge in the
graph. Is it safe for A?

4/9/09 CS380 Algorithm Design and Analysis

a

a

a

a

a

a a

a

a

10

9

12

8 8
2

11

9
5

61

3 3

7

8

Finding a Safe Edge

• Intuitively: Let S, a subset of V, be any set of
vertices that includes c but not f (f is in V-S).
In any MST, there has to be one edge that
connects S with V-S. Why not choose the
edge with the minimum weight?

4/9/09 CS380 Algorithm Design and Analysis

9

Definitions

• Let S be a subset of V and A be a subset of
E
o A cut (S, V-S) is a partition of vertices into

disjoint sets V and S-V
o Edge (u,v) in E crosses cut (S,V-S) if one

endpoint is in S and the other is in V-S

o A cut respects A if and only if no edge in A
crosses the cut

o An edge is a light edge crossing a cut if and
only if its weight is minimum over all edges
crossing the cut

4/9/09 CS380 Algorithm Design and Analysis

10

Theorem

• Let A be a subset of some MST, (S,V-S) be
a cut that respects A, and (u,v) be a light
edge crossing (S,V-S).

• Then….

4/9/09 CS380 Algorithm Design and Analysis

11

Generic-MST

• So, in a generic MST
o A is a forest containing connected components.

Initially, each component is a single vertex

o Any safe edge merges two of these components
into one. Each component is a tree

o Since an MST has exactly |V|-1 edges, the for
loop iterates |V|-1 times. Equivalently, after
adding |V|-1 safe edges, we’re down to just one
component

4/9/09 CS380 Algorithm Design and Analysis

12

Kruskal’s Algorithm

• G = (V,E) is a connected, undirected,
weighted graph. w:E->R
o Starts with each vertex being its own component

o Repeatedly merges two components into one by
choosing the light edge that connects them

o Scans the set of edges in monotonically
increasing order by weight

o Uses a disjoint-set data structure to determine
whether an edge connects vertices in different
components

4/9/09 CS380 Algorithm Design and Analysis

13

Kruskal(V,E,w)

4/9/09 CS380 Algorithm Design and Analysis

14

Example

4/9/09 CS380 Algorithm Design and Analysis

a

a

a

a

a

a a

a

a

10

9

12

8 8
2

11

9
5

61

3 3

7

15

Prim’s Algorithm

• Builds one tree, so A is always a tree

• Starts from an arbitrary “root” r

• At each step, find a light edge crossing cut
(VA, V-VA), where VA = vertices that A is
incident on. Add this edge to A

4/9/09 CS380 Algorithm Design and Analysis

16

How to Find a Light Edge Quickly

• Use a priority queue Q:
o Each object is a vertex in V-VA

o Key of v is minimum weight of any edge (u,v),
where u is in VA

o Then the vertex returned by EXTRACT-MIN is v
such that there exists u in VA and (u,v) is a light
edge crossing (VA , V-VA)

o Key of v is infinity if v is not adjacent to any
vertices in VA

4/9/09 CS380 Algorithm Design and Analysis

17

Prim’s Algorithm

• The edges of A will form a rooted tree with
root r:
o r is given as an input to the algorithm, but it can

be any vertex
o Each vertex knows its parent in the tree by the

attribute π[v] = parent of v. π[v] = NIL if v = r or v
has no parent

4/9/09 CS380 Algorithm Design and Analysis

18

PRIM(V, E, w, r)

4/9/09 CS380 Algorithm Design and Analysis

a

a

a

a

a

a a

a

a

10

9

12

8 8
2

11

9
5

61

3 3

7

19

Example

4/9/09 CS380 Algorithm Design and Analysis

