

Topological Sort

4/7/09

- A topological sort is performed on a directed acyclic graph
- A topological sort is a linear ordering of all vertices of a graph such that if G contains an edge (u, v), then u appears before v in the ordering

Topological Sort

- A topological sort of a graph can be viewed as an ordering of its vertices along a horizontal line so that all directed edges go from left to right
- Directed Acyclic Graphs (DAG) are used in many applications to indicate precedences among events

CS380 Algorithm Design and Analysis

• What is a DAG?

4/7/09

4/7/09

4/7/09

Topological Sort

- Good for modeling processes and structures that have a partial order:
 - a > b and b > c implies that a > c
 - But may have and b such that neither a > b nor b > c

CS380 Algorithm Design and Analysis

TOPOLOGICAL-SORT(G)

- Call DFS(G) to compute finishing times f[v] for each vertex v
- As each vertex is finished, insert it onto the front of a linked list

CS380 Algorithm Design and Analysis

• Return the linked list of vertices

Strongly Connected Components

4/7/09

- Given a directed graph G = (V, E)
- A strongly connected component (SCC) of G is a maximal set of vertices *C* ⊆ *V*
- Such that for all $u, v \in C$ both $u \rightarrow v$ and $v \rightarrow u$

Transpose

- Algorithm uses G^T = transpose of G
 G^T
- How long does it take to create G^T if using adjacency lists?

CS380 Algorithm Design and Analysis

11

12

- Observation: G and G^{T} have the same SCC's.

SCC(G)

4/7/09

4/7/09

- Call DFS(G) to compute finishing times f[u] for all u
- Compute G^T
- Call DFS(G^T), but in the main loop, consider vertices in order of decreasing f[u] (as computed in first DFS)
- Output the vertices in each tree of the depthfirst forest formed in second DFS as a separate SCC

Class Problem - Bicoloring

- In 1976 the ``Four Color Map Theorem" was proven with the assistance of a computer. This theorem states that every map can be colored using only four colors, in such a way that no region is colored using the same color as a neighbor region. Here you are asked to solve a simpler similar problem. You have to decide whether a given arbitrary connected graph can be bicolored. That is, if one can assign colors (from a palette of two) to the nodes in such a way that no two adjacent nodes have the same color. To simplify the problem you can assume: o no node will have an edge to itself
 - o no node will have an edge to itself.
 - the graph is nondirected. That is, if a node a is said to be connected to a node b, then you must assume that b is connected to a.
 - the graph will be strongly connected. That is, there will be at least one path from any node to any other node.

CS380 Algorithm Design and Analysis

14

15

Bicoloring

Input

4/7/09

- The input consists of several test cases. Each test case starts with a line containing the number n (1 < n < 200) of different nodes. The second line contains the number of edges *I*. After this, *I* lines will follow, each containing two numbers that specify an edge between the two nodes that they represent. A node in the graph will be labeled using a number a. An input with n = 0 will mark the end of the input and is not to be processed.
- Output

4/7/09

 You have to decide whether the input graph can be bicolored or not

Bicolorii	ng	
Input: 3 3 1 2 2 0 9 8 0 1 0 2 0 9 8 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 1 0 1 0 1 2 2 0 9 9 8 0 1 2 2 0 9 9 8 0 1 2 2 0 9 9 8 0 1 2 2 0 9 9 8 0 1 2 0 9 9 8 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>Output:</u> not bicolorable bicolorable	_
4/7/09	CS380 Algorithm Design and Analysis	16

