
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Topological Sort

- A topological sort is performed on a directed
acyclic graph
- A topological sort is a linear ordering of all
vertices of a graph such that if G contains an
edge (u, v), then u appears before v in the
ordering

$\frac{\text { css80 Aloorithm Design and Analysis }}{47109}$

Topological Sort
- A topological sort of a graph can be viewed
as an ordering of its vertices along a
horizontal line so that all directed edges go
from left to right
- Directed Acyclic Graphs (DAG) are used in
many applications to indicate precedences
among events
- What is a DAG?
$\frac{47709}{4}$

TOPOLOGICAL-SORT(G)
- Call DFS(G) to compute finishing times $\mathrm{f}[\mathrm{v}]$
for each vertex v
- As each vertex is finished, insert it onto the
front of a linked list
- Return the linked list of vertices
$\frac{\text { Css80 Aloorithm Design and Analysis }}{47009}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Topological Sort
- Running time for topological sort is:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Strongly Connected Components

- Given a directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- A strongly connected component (SCC) of G
is a maximal set of vertices $C \subseteq V$
- Such that for all $u, v \in C$ both $\mathrm{u}->\mathrm{v}$ and $\mathrm{v}->\mathrm{u}$

$\frac{\text { CS3300 Aloorithm Dosign and Anaysis }}{47109}$

Identify the strongly connected components
\qquad
\qquad
\qquad

Transpose
- Algorithm uses $\mathrm{G}^{\top}=$ transpose of G
$\circ \mathrm{G}^{\top}$
- How long does it take to create G^{\top} if using
adjacency lists?
- Observation: G and G^{\top} have the same
SCC's.

SCC(G)

- Call DFS(G) to compute finishing times f[u] for all u
\qquad
- Compute G^{\top}
- Call DFS(G^{\top}), but in the main loop, consider vertices in order of decreasing f[u] (as computed in first DFS)
- Output the vertices in each tree of the depthfirst forest formed in second DFS as a separate SCC

Class Problem - Bicoloring

- In 1976 the "Four Color Map Theorem" was proven with the assistance of a computer. This theorem states that every map can be colored using only four colors, in such a way that no region is colored using the same color as a neighbor region. Here you are asked to solve a simpler similar problem. You have to decide whether a given arbitrary connected graph can be bicolored. That is, if one can assign colors (from a palette of two) to the nodes in such a way that no two adjacent nodes have the same color. To simplify the problem you can assume.
- no node will have an edge to itself.
- the graph is nondirected. That is, if a node a is said to be connected to a node b, then you must assume that b is connected to a.
- the graph will be strongly connected. That is, there will be at least one path from any node to any other node.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bicoloring		
Input:	Output: NOT BICOLORABLE BICOLORABLE	
3		
3		
01		
12		
20		
9		
8		
01		
02		
03		
04		
05		
06		
07		
08		
0		
4/7/09	CS380 Algorithm Design and Analysis	16

