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Elementary Graph Algorithms

Chapter 22
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Your Turn

• Solve exercise 22.3-2 on page 547
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Topological Sort

• A topological sort is performed on a directed
acyclic graph

• A topological sort is a linear ordering of all
vertices of a graph such that if G contains an
edge (u, v), then u appears before v in the
ordering
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Topological Sort

• A topological sort of a graph can be viewed
as an ordering of its vertices along a
horizontal line so that all directed edges go
from left to right

• Directed Acyclic Graphs (DAG) are used in
many applications to indicate precedences
among events

• What is a DAG?
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Topological Sort

• Good for modeling processes and structures
that have a partial order:
o a > b and b > c implies that a > c

o But may have and b such that neither a > b nor
b > c
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TOPOLOGICAL-SORT(G)

• Call DFS(G) to compute finishing times f[v]
for each vertex v

• As each vertex is finished, insert it onto the
front of a linked list

• Return the linked list of vertices
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Example
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Topological Sort

• Running time for topological sort is:
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Strongly Connected Components

• Given a directed graph G = (V, E)

• A strongly connected component (SCC) of G
is a maximal set of vertices

• Such that for all             both u -> v and v->u
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Example

• Identify the strongly connected components
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Transpose

• Algorithm uses GT = transpose of G
o GT

• How long does it take to create GT if using
adjacency lists?

•  Observation: G and GT  have the same
SCC’s.
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SCC(G)

• Call DFS(G) to compute finishing times f[u]
for all u

• Compute GT

• Call DFS(GT), but in the main loop, consider
vertices in order of decreasing f[u] (as
computed in first DFS)

• Output the vertices in each tree of the depth-
first forest formed in second DFS as a
separate SCC
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Example
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Class Problem - Bicoloring

• In 1976 the ``Four Color Map Theorem" was proven with
the assistance of a computer. This theorem states that
every map can be colored using only four colors, in such
a way that no region is colored using the same color as a
neighbor region. Here you are asked to solve a simpler
similar problem. You have to decide whether a given
arbitrary connected graph can be bicolored. That is, if
one can assign colors (from a palette of two) to the nodes
in such a way that no two adjacent nodes have the same
color. To simplify the problem you can assume:

o no node will have an edge to itself.
o the graph is nondirected. That is, if a node a is said to be

connected to a node b, then you must assume that b is
connected to a.

o the graph will be strongly connected. That is, there will be at
least one path from any node to any other node.
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Bicoloring

• Input
o The input consists of several test cases. Each test

case starts with a line containing the number n ( 1 <
n < 200) of different nodes. The second line
contains the number of edges l. After this, l lines will
follow, each containing two numbers that specify an
edge between the two nodes that they represent. A
node in the graph will be labeled using a number a.
An input with n = 0 will mark the end of the input and
is not to be processed.

• Output
o You have to decide whether the input graph can be

bicolored or not
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Bicoloring
Input:

3

3

0 1

1 2

2 0

9

8
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0 5
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0 7

0 8

0
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Output:
NOT BICOLORABLE
BICOLORABLE


