
1

Elementary Graph Algorithms

Chapter 22

4/7/09 CS380 Algorithm Design and Analysis

2

Your Turn

• Solve exercise 22.3-2 on page 547

4/7/09 CS380 Algorithm Design and Analysis

v w

s

q

t

x

z

r

u

y

3

Topological Sort

• A topological sort is performed on a directed
acyclic graph

• A topological sort is a linear ordering of all
vertices of a graph such that if G contains an
edge (u, v), then u appears before v in the
ordering

4/7/09 CS380 Algorithm Design and Analysis

4

Topological Sort

• A topological sort of a graph can be viewed
as an ordering of its vertices along a
horizontal line so that all directed edges go
from left to right

• Directed Acyclic Graphs (DAG) are used in
many applications to indicate precedences
among events

• What is a DAG?

4/7/09 CS380 Algorithm Design and Analysis

5

Topological Sort

• Good for modeling processes and structures
that have a partial order:
o a > b and b > c implies that a > c

o But may have and b such that neither a > b nor
b > c

4/7/09 CS380 Algorithm Design and Analysis

6

TOPOLOGICAL-SORT(G)

• Call DFS(G) to compute finishing times f[v]
for each vertex v

• As each vertex is finished, insert it onto the
front of a linked list

• Return the linked list of vertices

4/7/09 CS380 Algorithm Design and Analysis

7

Example

4/7/09 CS380 Algorithm Design and Analysis

socks shorts

hose

pants

skates

Leg
pads

T-shirt

Chest pad

sweater

mask

Catch glove

blocker

Batting
glove

8

Topological Sort

• Running time for topological sort is:

4/7/09 CS380 Algorithm Design and Analysis

9

Strongly Connected Components

• Given a directed graph G = (V, E)

• A strongly connected component (SCC) of G
is a maximal set of vertices

• Such that for all both u -> v and v->u

4/7/09 CS380 Algorithm Design and Analysis

VC !

Cvu !,

10

Example

• Identify the strongly connected components

4/7/09 CS380 Algorithm Design and Analysis

a

f

b

g

c

h

d e

i j

11

Transpose

• Algorithm uses GT = transpose of G
o GT

• How long does it take to create GT if using
adjacency lists?

• Observation: G and GT have the same
SCC’s.

4/7/09 CS380 Algorithm Design and Analysis

12

SCC(G)

• Call DFS(G) to compute finishing times f[u]
for all u

• Compute GT

• Call DFS(GT), but in the main loop, consider
vertices in order of decreasing f[u] (as
computed in first DFS)

• Output the vertices in each tree of the depth-
first forest formed in second DFS as a
separate SCC

4/7/09 CS380 Algorithm Design and Analysis

13

Example

4/7/09 CS380 Algorithm Design and Analysis

a

f

b

g

c

h

d e

i j

14

Class Problem - Bicoloring

• In 1976 the ``Four Color Map Theorem" was proven with
the assistance of a computer. This theorem states that
every map can be colored using only four colors, in such
a way that no region is colored using the same color as a
neighbor region. Here you are asked to solve a simpler
similar problem. You have to decide whether a given
arbitrary connected graph can be bicolored. That is, if
one can assign colors (from a palette of two) to the nodes
in such a way that no two adjacent nodes have the same
color. To simplify the problem you can assume:

o no node will have an edge to itself.
o the graph is nondirected. That is, if a node a is said to be

connected to a node b, then you must assume that b is
connected to a.

o the graph will be strongly connected. That is, there will be at
least one path from any node to any other node.

4/7/09 CS380 Algorithm Design and Analysis

15

Bicoloring

• Input
o The input consists of several test cases. Each test

case starts with a line containing the number n (1 <
n < 200) of different nodes. The second line
contains the number of edges l. After this, l lines will
follow, each containing two numbers that specify an
edge between the two nodes that they represent. A
node in the graph will be labeled using a number a.
An input with n = 0 will mark the end of the input and
is not to be processed.

• Output
o You have to decide whether the input graph can be

bicolored or not

4/7/09 CS380 Algorithm Design and Analysis

16

Bicoloring
Input:

3

3

0 1

1 2

2 0

9

8

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0

4/7/09 CS380 Algorithm Design and Analysis

Output:
NOT BICOLORABLE
BICOLORABLE

