Elementary Graph Algorithms

Chapter 22

4/1/09

CS380 Algorithm Design and Analysis

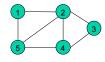
Graph Representation

- Given a graph G = (V, E)
- The graph may be directed or undirected
- There are two common ways to represent for algorithms:
 - o Adjacency lists.
 - o Adjacency matrix.

4/1/09

CS380 Algorithm Design and Analysis

Running Times


- We will be talking about the running time of graph algorithms in terms of both Vertices |V| and Edges |E|
- We can remove the cardinality when in asymptotic notation
 - Example: O(V + E)

4/1/09

CS380 Algorithm Design and Analysis

Adjacency Lists

- Array Adj of |V| lists, one per vertex
- Vertex u's list has all vertices v such that $(u,v) \in E$
- Example:

4/1/09

CS380 Algorithm Design and Analysis

Example

- Space:
- Time to list all vertices adjacent to u:
- Time to determine if (u,v) is an edge:

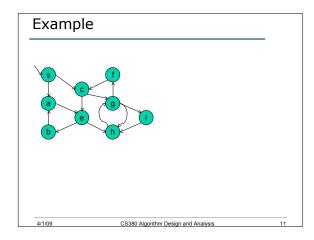
4/1/09

CS380 Algorithm Design and Analysis

Adjacency Matrix

• |V| x |V| matrix A = (a_{ii})

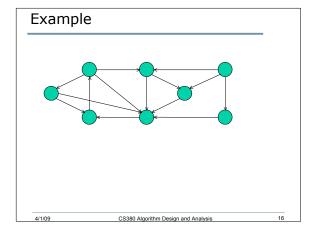
$$aij = \begin{cases} 1 & if(i,j) \in E \\ 0 & otherwise \end{cases}$$


4/1/09

CS380 Algorithm Design and Analysis

Adjacency Matrix	
• Space:	
Time to list all vertices adjacent to u:	
• Time to determine if (u,v) is an edge:	-
What about weighted graphs?	
4/1/09 CS380 Algorithm Design and Analysis 7	
Breadth-First Search	
 Input: Graph G = (V, E), either directed or undirected, and source vertex s is in V. 	
Output:	
 d[v] = distance (smallest # of edges) from s to v, for all v in V. 	
 π[v] = u such that (u,v) is last edge on shortest path s->v 	
• u is v's predecessor	
• Set of edges $\{(\pi[v],v): v \neq s\}$ forms a tree	
4/1/09 CS380 Algorithm Design and Analysis 8	
Breadth-First Search	
Idea: Send a wave out from s.	
 First hits all vertices 1 edge from s. 	
 From there, hits all vertices 2 edges from s. 	
• Etc.	
 Use FIFO queue Q to maintain wavefront. v is in Q if and only if wave has hit v but has not 	
come out of v yet	
	-

CS380 Algorithm Design and Analysis 9


4/1/09

Breadth-First Search • Will breadth-first search reach all vertices? • Time = O()

4/1/09 CS380 Algorithm Design and Analysis 12

Depth-First Search	
 Input: G = (V, E), directed or undirected. No source vertex given. 	
Output: 2 timestamps on each vertex:	
∘ d[v] = discovery time	
∘ f[v] = finishing time	
 π[v] = u such that (u,v) is last edge on shortest path s->v 	
patit 5-2 v	
4/1/09 CS380 Algorithm Design and Analysis 13	
DFS(G)	
	·
4/1/09 CS380 Algorithm Design and Analysis 14	
DFS-VISIT(u)	
4/1/09 CS380 Algorithm Design and Analysis 15	

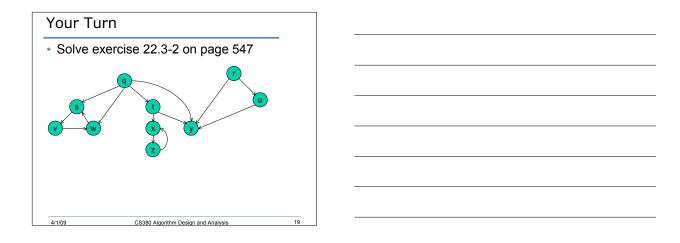
Depth-	-First	Search
--------	--------	--------

• Running Time =

4/1/09

CS380 Algorithm Design and Analysis

Classification of Edges


- Tree edge:
- Back edge:
- Forward edge:
- Cross edge:

4/1/09

CS380 Algorithm Design and Analysis

18

