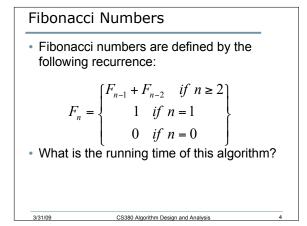


Dynamic Programming

- We know that we can use the divide-andconquer technique to obtain efficient algorithms
 - o Examples:

3/31/09

3/31/09

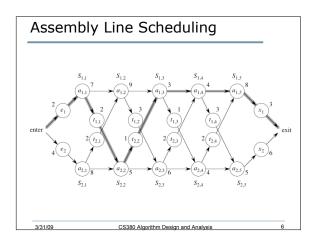

- Sometimes, the direct use of divide-andconquer produces really bad and inefficient algorithms
- Dynamic programming improves inefficient recursive algorithms

CS380 Algorithm Design and Analysis

Dynamic Programming

- · Not really dynamic
- Not really programming
- Name is used for historical reasons
- It comes from the term "mathematical programming", which is a synonym for optimization.
- "Program" is optimal plan for action that is produced (see Wikipedia!)

CS380 Algorithm Design and Analysis



Four Steps for Dynamic Programming Characterize the structure of an optimal solution Recursively define the value of an optimal solution Compute the value of an optimal solution in a bottom-up fashion Construct an optimal solution from computed information

CS380 Algorithm Design and Analysis

3/31/09

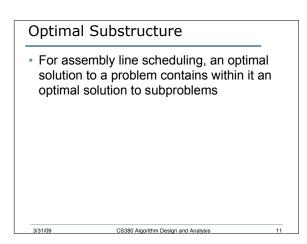
Scheduling

- · Factory with two assembly lines
 - $\circ\,$ Each line has n stations: $S_{1,1}...S_{1,\,n}$ and $S_{2,1}$ $....S_{2,\,n}$
 - $\circ\,$ Corresponding stations perform the same function but take different amounts of time $a_{\tau_{\rm J}}$ and $a_{\rm 2_{\rm J}}$
 - Entry times e1 and e2
 - Exit times x1 and x2
 - After going through a station, can either
 - Stay on same line; no cost
 - Transfer to other line; cost after $\mathsf{S}_{i,j}$ is $\mathsf{t}_{i,j}$

Problem

 Given all these costs, what stations should be chosen from line 1 and from line 2 for fastest way through the factory?

Assembly Line Scheduling


• Can you come up with a solution?

CS380 Algorithm Design and Analysis

• What is its running time?

3/31/09

```
Step 1: Structure of Fastest Way
Think about fastest way from entry through S1,j
If j = 1:
If j >= 2:
```

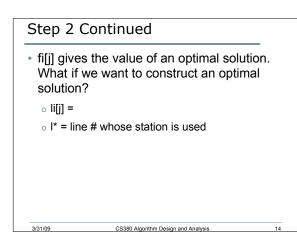

- Let $f_i[j]$ = fastest time to get through $S_{i,j}$ where i = 1, 2 and j = 1, 2, ..., n
- Goal: fastest time to get all the way through = f*

CS380 Algorithm Design and Analysis

12

- f* =
- f₁[1] =
- f₂[1] =

3/31/09


Step 2 Continued

• For j = 2, 3, ..., n:

o f1[j] =

o f2[j] =

	3/31/09	CS380 Algorithm Design and Analysis	13

Step 3: Compute an Optimal Solution
• FASTEST-WAY(a, t, e, x, n)
3/31/09 CS380 Algorithm Design and Analysis 15

Step 4: Construct Fastest Way

• PRINT-STATIONS(I, n)

3/31/09 CS380 Algorithm Design and Analysis 16