
1

Dynamic Programming

Chapter 15

3/31/09 CS380 Algorithm Design and Analysis

2

Dynamic Programming

• We know that we can use the divide-and-
conquer technique to obtain efficient
algorithms
o Examples:

• Sometimes, the direct use of divide-and-
conquer produces really bad and inefficient
algorithms

• Dynamic programming improves inefficient
recursive algorithms

3/31/09 CS380 Algorithm Design and Analysis

3

Dynamic Programming

• Not really dynamic

• Not really programming

• Name is used for historical reasons

• It comes from the term “mathematical
programming”, which is a synonym for
optimization.

• “Program” is optimal plan for action that is
produced (see Wikipedia!)

3/31/09 CS380 Algorithm Design and Analysis

4

Fibonacci Numbers

• Fibonacci numbers are defined by the
following recurrence:

• What is the running time of this algorithm?

3/31/09 CS380 Algorithm Design and Analysis

!
"

!
#

$

!
%

!
&

'

=

=

(+

=

))

00

11

2
21

nif

nif

nifFF

F

nn

n

5

Four Steps for Dynamic Programming

• Characterize the structure of an optimal
solution

• Recursively define the value of an optimal
solution

• Compute the value of an optimal solution in
a bottom-up fashion

• Construct an optimal solution from computed
information

3/31/09 CS380 Algorithm Design and Analysis

6

Assembly Line Scheduling

3/31/09 CS380 Algorithm Design and Analysis

7

Scheduling

• Factory with two assembly lines
o Each line has n stations: S1,1…S1, n and S2,1

….S2, n

o Corresponding stations perform the same
function but take different amounts of time a1,j

and a2,j

o Entry times e1 and e2
o Exit times x1 and x2
o After going through a station, can either

 Stay on same line; no cost
 Transfer to other line; cost after Si,j is ti,j

8

Problem

• Given all these costs, what stations should
be chosen from line 1 and from line 2 for
fastest way through the factory?

9

Assembly Line Scheduling

• Can you come up with a solution?

• What is its running time?

3/31/09 CS380 Algorithm Design and Analysis

10

Step 1: Structure of Fastest Way

3/31/09 CS380 Algorithm Design and Analysis

• Think about fastest way from entry through
S1,j
o If j = 1:

o If j >= 2:

11

Optimal Substructure

• For assembly line scheduling, an optimal
solution to a problem contains within it an
optimal solution to subproblems

3/31/09 CS380 Algorithm Design and Analysis

12

Step 2: Recursive Solution

• Let fi[j] = fastest time to get through Si,j where
i = 1, 2 and j = 1, 2, …, n

• Goal: fastest time to get all the way through
= f*

• f* =

• f1[1] =

• f2[1] =

3/31/09 CS380 Algorithm Design and Analysis

13

Step 2 Continued

3/31/09 CS380 Algorithm Design and Analysis

• For j = 2, 3, …, n:
o f1[j] =
o f2[j] =

14

Step 2 Continued

• fi[j] gives the value of an optimal solution.
What if we want to construct an optimal
solution?
o li[j] =
o l* = line # whose station is used

3/31/09 CS380 Algorithm Design and Analysis

15

Step 3: Compute an Optimal Solution

• FASTEST-WAY(a, t, e, x, n)

3/31/09 CS380 Algorithm Design and Analysis

16

Step 4: Construct Fastest Way

3/31/09 CS380 Algorithm Design and Analysis

• PRINT-STATIONS(l, n)

