
1

Hash Tables and Elementary
Data Structures

Chapters 10 and 11

3/17/09 CS380 Algorithm Design and Analysis

2

Elementary Data Structures

• What structures did we cover in CS300?

• What operations are performed on these
structures?

3/17/09 CS380 Algorithm Design and Analysis

3

Languages without Pointers

• How can we implement pointers, as in linked
lists, in languages that do not have pointers?

3/17/09 CS380 Algorithm Design and Analysis

4

Multiple Array Representation

3/17/09 CS380 Algorithm Design and Analysis

9 6 4 1

5

Single Array Representation

3/17/09 CS380 Algorithm Design and Analysis

6

Representing Rooted Trees

• p

• left

• right

• If p[x] = Nil then x is the root

• If node x has no children then:
o left[x] = Nil and right[x] = Nil

• Root of tree T is root[T]

• If root[T] is Nil then the tree is empty
3/17/09 CS380 Algorithm Design and Analysis

7

Rooted Trees with Unbounded Branching

• What if a node in a tree can have up to
o 3 children?
o 4 children?

o 5 children? Etc.

• When the number of children is unbounded
we have no idea how many child nodes to
create

• Can we use binary trees to represent
unbounded trees?

3/17/09 CS380 Algorithm Design and Analysis

8

Rooted Trees with Unbounded Branching

3/17/09 CS380 Algorithm Design and Analysis

A

B C D E

F G H I J K

9

Bit Manipulation
#include <iostream>

using namespace std;

typedef unsigned long Bits;

int main()

{

 Bits val1, val2, val, result;

 cout.setf(ios::showbase);

 cout.setf(ios::hex, ios::basefield);

 cout << "Enter bit pattern to be complemented: ";

 cin >> val;

 result = ~val;

 cout << "Val: " << val << ", Not val: " << result << endl;

3/17/09 CS380 Algorithm Design and Analysis

10

And

cout << "Enter two bit patterns to be Anded: "

 << endl;

cout << "Val1 :";

cin >> val1;

cout << "Val2 :"; cin >> val2;

result = val1 & val2;

cout << "Val1 : " << val1 << ", Val2 : "

 << val2 << ", And gives " << result

 << endl;

3/17/09 CS380 Algorithm Design and Analysis

11

Or

cout << "Enter two bit patterns to be Ored: "

 << endl;

cout << "Val1 :";

cin >> val1;

cout << "Val2 :";

cin >> val2;

result = val1 | val2;

cout << "Val1 : " << val1 << ", Val2 : "

 << val2 << ", Or gives " << result

 << endl;

3/17/09 CS380 Algorithm Design and Analysis

12

XOR

cout << "Enter two bit patterns to be Xored: "

 << endl;

cout << "Val1 :";

cin >> val1;

cout << "Val2 :";

cin >> val2;

result = val1 ^ val2;

cout << "Val1 : " << val1 << ", Val2 : "

 << val2 << ", Xor gives " << result

 << endl;

3/17/09 CS380 Algorithm Design and Analysis

13

Output

3/17/09 CS380 Algorithm Design and Analysis

14

Bit Shifting

Bits val, result;

int i;

cout.setf(ios::showbase);

cout.setf(ios::hex,ios::basefield);

cout << "Enter val ";

cin >> val;

cout << "Enter shift amount ";

cin >> std::hex >> i;

result = val << i;

cout << "Left shifting gives " << result << endl;

result = val >> i;

cout << "Right shifting gives " << result << endl;

3/17/09 CS380 Algorithm Design and Analysis

15

Bit Shifting

3/17/09 CS380 Algorithm Design and Analysis

16

Hashing

• It is common to need to generate a “key
value” that summarizes or characterizes a
complex data type

• This is called hashing and is something of
an art form

3/17/09 CS380 Algorithm Design and Analysis

17

Hashing a String

• The key should depend on every character
in the string

• The hash key is going to be a mix-up of the
bits of the characters in the string

• XOR is good because it depends on both
inputs

• The pattern is going to combine bits from all
of the characters by a loop that xors the next
character into a key, then moves the key to
the left a little to fill up a long int

3/17/09 CS380 Algorithm Design and Analysis

18

Hashing a String

• When you move the key left, some bits fall
off the end. These are the bits that encode
the first few characters in the string.

• With a long string, the result could end up
depending only on the last few characters in
the string.

• How can we avoid the problem?
o Save the bits that fall off and feed them back in

on the right, xoring them with the new char data

3/17/09 CS380 Algorithm Design and Analysis

19

Example of Problem

• Here’s what happens when the bits fall off
the end

3/17/09 CS380 Algorithm Design and Analysis

20

Hash String Function

Bits HashString(const char str[])
{
 Bits Result = 0;
 int n = strlen(str);
 Bits Top5Bits = 0xf8000000;
 Bits Carry = 0x0;
 const int kleftmove = 5;
 const int krightmove = 27;
 for(int i = 0; i < n; i++)
 {
 Carry = Result & Top5Bits;
 Carry = Carry >> krightmove;
 Result = Result << kleftmove;
 Result ^= Carry;
 Result ^= str[i];
 }
 return Result;
}

3/17/09 CS380 Algorithm Design and Analysis

21

Working Hash String

3/17/09 CS380 Algorithm Design and Analysis

22

Hash String

• Would it be possible to have two different
strings hash to the same key?

• What can you use the hash key for?

3/17/09 CS380 Algorithm Design and Analysis

23

Simple Hash Table

• Use modulo arithmetic
o How? Why?

• This could cause hash collisions

3/17/09 CS380 Algorithm Design and Analysis

24

Handling Collisions

• Techniques for handling collisions include:
o Chaining
o Linear Probing

o Quadratic Probing

3/17/09 CS380 Algorithm Design and Analysis

1,,1,0

mod))((),(

}.1,...,1,0{:

!=

+"=

!#"

mifor

mikhikh

mUh

K

micickhikh mod))((),(2

21 ++!=

25

Handling Collisions

• Double Hashing
o One of the best methods for open addressing

o Example:

 Where will the key 14 be inserted

3/17/09 CS380 Algorithm Design and Analysis

mkihkhikh mod))()((),(21 +=

)11mod(1)(

13mod)(

2

1

kkh

kkh

+=

=

Index Key
0
1 79
2
3
4 69
5 98
6
7 72
8
9
10
11 50
12

