Hash Tables and Elementary
Data Structures

Chapters 10 and 11

3/17/09 8380 Algorithm Design and Analysis 1

Elementary Data Structures

* What structures did we cover in CS3007?

« What operations are performed on these
structures?

3/17/09 C8380 Algorithm Design and Analysis 2

Languages without Pointers

+ How can we implement pointers, as in linked
lists, in languages that do not have pointers?

3/17/09 C8380 Algorithm Design and Analysis 3




Multiple Array Representation

3/17/09 8380 Algorithm Design and Analysis

Single Array Representation

3/17/09 C8380 Algorithm Design and Analysis

Representing Rooted Trees

°p

o left

* right

« If p[x] = Nil then x is the root

« If node x has no children then:
o left[x] = Nil and right[x] = Nil
* Root of tree T is root[T]

« If root[T] is Nil then the tree is empty

3/17/09 C8380 Algorithm Design and Analysis




Rooted Trees with Unbounded Branching

* What if a node in a tree can have up to
o 3 children?
o 4 children?
o 5 children? Etc.
* When the number of children is unbounded

we have no idea how many child nodes to
create

» Can we use binary trees to represent
unbounded trees?

3/17/09 8380 Algorithm Design and Analysis 7

Rooted Trees with Unbounded Branching

3/17/09 C8380 Algorithm Design and Analysis

Bit Manipulation

#include <iostream>

using namespace std;

typedef unsigned long Bits;

int main()
{
Bits vall, val2, val, result;
cout.setf (ios: : showbase) ;
cout.setf (ios::hex, ios::basefield);

cout << "Enter bit pattern to be complemented: ";

cin >> val;

result = ~val;

cout << "Val: " << val << ", Not val: " << result << endl;

3/17/09 C8380 Algorithm Design and Analysis




And

cout << "Enter two bit patterns to be Anded: "
<< endl;

cout << "vall :";

cin >> vall;

cout << "Val2 :"; cin >> val2;

result = vall & val2;

cout << "Vall : " << vall << ", Val2 : "
<< val2 << ", And gives " << result
<< endl;
3/17/09 8380 Algorithm Design and Analysis 10
Or
cout << "Enter two bit patterns to be Ored: "
<< endl;

cout << "Vvall :";
cin >> vall;
cout << "val2 :";
cin >> val2;

result = vall | val2;

cout << "Vall : " << vall << ", Val2 : "
<< val2 << ", Or gives " << result
<< endl;

3/17/09 C8380 Algorithm Design and Analysis 11

cout << "Enter two bit patterns to be Xored: "
<< endl;

cout << "Vvall :";

cin >> vall;

cout << "val2 :";

cin >> val2;

result = vall *~ val2;

cout << "Vall : " << vall << ", Val2 : "
<< val2 << ", Xor gives " << result

<< endl;

3/17/09 C8380 Algorithm Design and Analysis 12




Output

ot C:\WINDOWS\system32\cmd.exe HEE

[Enter bhit pattern to he complemented: 6 u
Ual: Ox6, Not val: Oxfffffff9 [—
[Enter two bit patterns to be Anded :

Uall

Ual2

Uall Bx3, Val2 : Bx5,. And gives Bx1

Eniir two hit patterns to be Ored :

EY

Ual2
Uall Bx3, VUal2 : Bx5,. Or gives @x?
Enter two bit patterns to be Xored :
Uall

Ual2

Uall Bx3, Ual2 : Bx5, Xor gives Bx6
Press any key to continue . .

3/17/09 8380 Algorithm Design and Analysis 13

Bit Shifting

Bits val, result;

int i;

cout.setf (ios: :showbase) ;

cout.setf (ios::hex,ios: :basefield) ;
cout << "Enter val ";

cin >> val;

cout << "Enter shift amount ";

cin >> std::hex >> i;

result = val << i;

cout << "Left shifting gives " << result << endl;
result = val >> i;

cout << "Right shifting gives " << result << endl;

3/17/09 C8380 Algorithm Design and Analysis 14

Bit Shifting

o C:\WINDOWS\system32\cmd.exe HEE|

[Enter val 23
[Enter shift amount 2
Left shifting gives @Ox8c

[Right shifting gives BOx8
[Press any key to continue

3/17/09 C8380 Algorithm Design and Analysis 15




Hashing

« It is common to need to generate a “key
value” that summarizes or characterizes a
complex data type

+ This is called hashing and is something of
an art form

3/17/09 8380 Algorithm Design and Analysis 16

Hashing a String

» The key should depend on every character
in the string

» The hash key is going to be a mix-up of the
bits of the characters in the string

+ XOR is good because it depends on both
inputs

» The pattern is going to combine bits from all
of the characters by a loop that xors the next
character into a key, then moves the key to
the left a little to fill up a long int

3/17/09 C8380 Algorithm Design and Analysis 17

Hashing a String

* When you move the key left, some bits fall
off the end. These are the bits that encode
the first few characters in the string.

+ With a long string, the result could end up
depending only on the last few characters in
the string.

* How can we avoid the problem?

o Save the bits that fall off and feed them back in
on the right, xoring them with the new char data

3/17/09 C8380 Algorithm Design and Analysis 18




Example of Problem

» Here’s what happens when the bits fall off
the end

Bxdc6?hd??
Bxf467hd9?
BxcB27hd9?
Bx1627hd97
Beazley, and Bradley: Bx6223hcd?

Beazley, and Bradney: 0x6223h4d9
2,4.6-trinitrotoluene: B@xd8fh1%ab
S-trinitrotoluene: B@xd8fh1%ab
any key to continue . .

3/17/09 8380 Algorithm Design and Analysis

Hash String Function

Bits HashString(const char str[])
{
Bits Result = 0;
int n = strlen(str);
Bits Top5Bits = 0x£8000000;
Bits Carry = 0x0;
const int kleftmove = 5;
const int krightmove 27;
for(int i = 0; i < n; i++)

{
Carry = Result & Top5Bits;
Carry = Carry >> krightmove;
Result = Result << kleftmove;
Result “= Carry;
Result *= str[i];
}
return Result;
}
3/17/09 ©8380 Algorithm Design and Analysis 20

Working Hash String

\WINDOWS\system32\cmd.exe

Bxdc6?hd9?

Bxf467hd97?

BxcB2?7hd9?
Bx1627hd8h

nitm = Bxabel
4.5-trinitrotoluene: Bxahe5%e14
ss any key to continue . .

3/17/09 C8380 Algorithm Design and Analysis

21




Hash String

» Would it be possible to have two different
strings hash to the same key?

» What can you use the hash key for?

3/17/09 8380 Algorithm Design and Analysis 22

Simple Hash Table

» Use modulo arithmetic
o How? Why?

» This could cause hash collisions

3/17/09 C8380 Algorithm Design and Analysis 23

Handling Collisions

 Techniques for handling collisions include:
o Chaining
o Linear Probing
WU —1{0,],...m-1}.
h(k,i) = (h'(k)+i)modm
for i=01,...,m-1
o Quadratic Probing

h(k,i) = (h'(k) +c,i +c,i’)ymodm

3/17/09 C8380 Algorithm Design and Analysis 24




Handling Collisions

* Double Hashing

o One of the best methods for open addressing

h(k,i) = (h, (k) + i, (k)) mod m Index| Koy
1 79
o Example: 3
Iy (k) = kmod13 . -
hy (k) =1+ (k mod11) L
- Where will the key 14 be inserted ; 2
9
10
1 50
12

3/17/09 8380 Algorithm Design and Analysis




