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Linear Sorting

Chapter 8
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Counting Sort

• Depends on a key assumption:
o numbers to be sorted are integers in {0,

1, ..., k}

• Input: A[1..n]

• Output: B[1..n], sorted. B is assumed
to be already allocated and is given as
a parameter

• Auxiliary storage: C[0..k]
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COUNTING-SORT(A, B, n, k)
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Example

• 21, 51, 31, 01, 22, 32, 02, 33
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Analysis

• Is counting sort stable?
o What does stable mean?

• Analysis:

• How big of k is practical?

6

Your Turn

• A: <6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2>
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Radix Sort

• How IBM made its money. Punch card
readers for census tabulation in early
1900’s. Card sorters, worked on one
column at a time. It’s the algorithm for
using the machine that extends the
technique to multi-column sorting. The
human operator was part of the
algorithm!

• We’re going to sort d digits

8

RADIX-SORT(A, d)
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Example

690
704
435
751
835
608
453
326
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Bucket Sort

• Assumption: input is generated by a
random process that distributes
elements uniformly over [0,1)

• Idea:
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Bucket Sort

• Input: A[1..n], where  for all i

• Auxiliary array: B[0..n-1] of linked
lists, each list initially empty.
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BUCKET-SORT(A, n)
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Example

• A:<.78, .17, .39, .26, .72, .94, .21,
.12, .23, .68>


