
1

Linear Sorting

Chapter 8

3/2/09 CS380 Algorithm Design and Analysis

2

Counting Sort

• Depends on a key assumption:
o numbers to be sorted are integers in {0,

1, ..., k}

• Input: A[1..n]

• Output: B[1..n], sorted. B is assumed
to be already allocated and is given as
a parameter

• Auxiliary storage: C[0..k]

3/2/09 CS380 Algorithm Design and Analysis

3

COUNTING-SORT(A, B, n, k)



4

Example

• 21, 51, 31, 01, 22, 32, 02, 33

5

Analysis

• Is counting sort stable?
o What does stable mean?

• Analysis:

• How big of k is practical?

6

Your Turn

• A: <6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2>



7

Radix Sort

• How IBM made its money. Punch card
readers for census tabulation in early
1900’s. Card sorters, worked on one
column at a time. It’s the algorithm for
using the machine that extends the
technique to multi-column sorting. The
human operator was part of the
algorithm!

• We’re going to sort d digits

8

RADIX-SORT(A, d)

9

Example

690
704
435
751
835
608
453
326



10

Bucket Sort

• Assumption: input is generated by a
random process that distributes
elements uniformly over [0,1)

• Idea:

11

Bucket Sort

• Input: A[1..n], where  for all i

• Auxiliary array: B[0..n-1] of linked
lists, each list initially empty.

12

BUCKET-SORT(A, n)



13

Example

• A:<.78, .17, .39, .26, .72, .94, .21,
.12, .23, .68>


