
1

Heapsort

Chapter 6

2/12/09 CS380 Algorithm Design and Analysis

2

Review of Binary Trees

• What is a binary tree?

• What is the depth of the node?

• What is the height of a node?

• What is the height of the tree?

• What is a complete binary tree?

2/12/09 CS380 Algorithm Design and Analysis

3

Facts about Complete Binary Trees

2/12/09 CS380 Algorithm Design and Analysis

4

Heaps

• A heap is an “almost” complete binary tree

• Extra nodes go from left to right at the lowest
level

• Where the value at each node is ≥ the
values at its children (if any)

• This is called the heap property for max-
heaps

2/12/09 CS380 Algorithm Design and Analysis

5

Example

2/12/09 CS380 Algorithm Design and Analysis

6

Storing Heaps

• As arrays!

• Root of tree is:

• Parent of A[i] is:

• Left child of A[i] is:

• Right child of A[i] is:

2/12/09 CS380 Algorithm Design and Analysis

7

Example

• n = 13

92 85 73 81 44 59 64 13 23 36 32 18 54

2/12/09 CS380 Algorithm Design and Analysis

8

Functions on Heaps

• MAX-HEAPIFY

• BUILD-MAX-HEAP

• HEAPSORT

• MAX-HEA-INSERT

• HEAP-EXTRACT-MAX

• HEAP-INCREASE-KEY

• HEAP-MAXIMUM

2/12/09 CS380 Algorithm Design and Analysis

9

MAX-HEAPIFY

2/12/09 CS380 Algorithm Design and Analysis

10

Example

• 15 6 4 8 5 3 1 2 7 i = 2

2/12/09 CS380 Algorithm Design and Analysis

11

BUILD-MAX-HEAP

2/12/09 CS380 Algorithm Design and Analysis

12

Example

2/12/09 CS380 Algorithm Design and Analysis

• 4 3 7 13 1 20 12 16 2 18

13

HEAPSORT

2/12/09 CS380 Algorithm Design and Analysis

14

Example

2/12/09 CS380 Algorithm Design and Analysis

• 20 18 12 16 3 7 4 13 2 1

15

Priority Queues

• Priority Queues are an example of an
application of heaps.

• A priority queue is a data structure for
maintaining a set of elements, each with an
associated key.

16

Priority Queues

• Max-priority queue supports dynamic set
operations:
o INSERT(S, x): inserts element x into set S.

o MAXIMUM(S): returns element of S with largest key.

o EXTRACT-MAX(S): removes and returns element S with
largest key.

o INCREASE-KEY(S, x, k): increases value of element x’s
key to k. Assume k >= x’s current key value.

17

HEAP-MAXIMUM(A)

18

HEAP-EXTRACT-MAX

• Given the array A:
o Make sure heap is not empty.

o Make a copy of the maximum element.

o Make the last node in the tree the new root.

o Re-heapify the heap, with one fewer node.

o Return the copy of the maximum element.

19

Example

• 15 6 4 8 5 3 1 2 7

20

HEAP-INCREASE-KEY

• Given set S, element x, and new key value
k:
o Make sure >= x’s current key.

o Update x’s key value to k.

o Traverse the tree upward comparing x to its
parent and swapping keys if necessary, until x’s
key is smaller than its parent’s key.

21

Example

• Increase key of node 6 in previous example
to 20

22

MAX-HEAP-INSERT

• Given a key k to insert into the heap:
o Insert a new node in the very last position in the

tree with the key -infinity.

o Increase the -infinity key to k using the HEAP-
INCREASE-KEY procedure.

23

Example

• Insert 12 into the above heap.

