Heapsort

Chapter 6

2/12/09 CS380 Algorithm Design and Analysis

Review of Binary Trees

* What is a binary tree?

« What is the depth of the node?
What is the height of a node?
What is the height of the tree?

.

.

* What is a complete binary tree?

2/12/09 CS380 Algorithm Design and Analysis 2

Facts about Complete Binary Trees

)-%“1 4F oF_NODES
|
! 2L
2 4
N N N N N :h
h 2

Tora: 2222
L=o

2/12/09 CS380 Algorithm Design and Analysis 3




Heaps

* A heap is an “almost” complete binary tree

« Extra nodes go from left to right at the lowest
level

- Where the value at each node is = the
values at its children (if any)

» This is called the heap property for max-
heaps

2/12/09 CS380 Algorithm Design and Analysis 4
2/12/09 CS380 Algorithm Design and Analysis 5

Storing Heaps

* As arrays!

.

Root of tree is:
Parent of A[i] is:
Left child of A[i] is:
Right child of A[i] is:

.

.

.

2/12/09 CS380 Algorithm Design and Analysis 6




Example

°n=13
92 85 73 81 44 59 64 13 23 36 32 18 54

2/12/09 CS380 Algorithm Design and Analysis 7

Functions on Heaps

*« MAX-HEAPIFY
BUILD-MAX-HEAP
HEAPSORT
MAX-HEA-INSERT
HEAP-EXTRACT-MAX
HEAP-INCREASE-KEY
HEAP-MAXIMUM

.

.

.

.

.

.

2/12/09 CS380 Algorithm Design and Analysis 8

MAX-HEAPIFY

2/12/09 CS380 Algorithm Design and Analysis 9




Example

©+ 1564853127 i=2

2/12/09 CS380 Algorithm Design and Analysis 10
2/12/09 CS380 Algorithm Design and Analysis 1
Example
©437131201216218
2/12/09 CS380 Algorithm Design and Analysis 12




HEAPSORT

2/12/09 CS380 Algorithm Design and Analysis

Example

+201812163741321

2/12/09 CS380 Algorithm Design and Analysis

Priority Queues

* Priority Queues are an example of an
application of heaps.

A priority queue is a data structure for
maintaining a set of elements, each with an
associated key.




Priority Queues

» Max-priority queue supports dynamic set
operations:
o INSERT(S, x): inserts element x into set S.
o MAXIMUM(S): returns element of S with largest key.

o EXTRACT-MAX(S): removes and returns element S with
largest key.

o INCREASE-KEY(S, x, k): increases value of element x’s
key to k. Assume k >= x’s current key value.

HEAP-MAXIMUM(A)

HEAP-EXTRACT-MAX

» Given the array A:
o Make sure heap is not empty.
o Make a copy of the maximum element.
o Make the last node in the tree the new root.
o Re-heapify the heap, with one fewer node.

o Return the copy of the maximum element.




Example

15 6 4 8 53127

HEAP-INCREASE-KEY

« Given set S, element x, and new key value
k:
o Make sure >= x’s current key.
o Update x’s key value to k.

o Traverse the tree upward comparing x to its
parent and swapping keys if necessary, until x’s
key is smaller than its parent’s key.

Example

* Increase key of node 6 in previous example
to 20




MAX-HEAP-INSERT

» Given a key k to insert into the heap:

o Insert a new node in the very last position in the
tree with the key -infinity.

o Increase the -infinity key to k using the HEAP-
INCREASE-KEY procedure.

Example

« Insert 12 into the above heap.




