Recurrence Relations — Running
Time for Recursive Functions

Chapter 2

2/9/09 8380 Algorithm Design and Analysis 1

Asymptotic Dominance in Action

| _______Joign) Jom _lomign) [nz [[m |
10 0.003pys 0.01us 0.083pus 0.1ps 1 s 3.63 ms

20 0.004 ys 0.02pus 0.086pus 0.4 ps 1 ms 771 years
30 0.005pus 0.03pus 0.147ps 0.9 ps 1 sec 8.4*1015 yrs
10 0.005pus 0.04pus 0.213pus 1.6 ps 18.3 min

50 0.006 ys 0.05pus 0.282pus 2.5ps 13 days

100 0.007 ys 0.1 ps 0.644 uys 10 s 4*1013 yrs

1,000 0.010 ys 1.00ys 9.966us 1ms

10,000 0.013 us 10 ps 130 ps 100 ms

100,000 0.017 ys 0.10ms 1.67 ms 10 sec

1,000,000 0.020 ys 1 ms 19.93 ms 16.7 min

10,000,000 0.023 uys 0.01sec 0.23sec 1.16 days
100,000,000 0.027 ys 0.10sec 2.66sec 115.7
1,000,000,000 0.030 ps 1 sec 29.90 sec 3.7 years

2/9/09 CS380 Algorithm Design and Analysis 2

Motivation

+ The following structure and function exist:
struct Tree
{

int info;

Tree * left;

Tree * right;

Tree(int value, Tree * lchild, Tree * rchild)
info(value), left(lchild), right(rchild) { }

}i

// return true if & only if all values in t are less than val

bool ValsLess(Tree * t, int wval)

2/9/09 C8380 Algorithm Design and Analysis 3

Motivation

// returns true if t represents a binary
// search tree containing no duplicate values;
bool IsBST(Tree * t)
{
if (t == NULL) return true;
return ValsLess (t->left, t->info) &&
ValsGreater (t->right, t->info) &&
ISBST (t->left) &&
IsBST (t->right);
}

* What is the complexity or running time of the
above function?

2/9/09 8380 Algorithm Design and Analysis 4

Another Example

+ What is the asymptotic complexity of the
function below? Assume Combine is O(n)
// postcondition: a[left] <= ... <= a[right
void DoStuff (vector<int> & a, int left, int right)
{
int mid = (left + right)/2;
if (left < right)
{
DoStuff (a, left, mid);
DoStuff(a, mid + 1, right);
Combine (a, left, mid, right);

2/9/09 C8380 Algorithm Design and Analysis 5

Another Example

« What does the function below remind you of?
// postcondition: a[left] <= ... <= a[right]
void DoStuff (vector<int> & a, int left, int right)
{
int mid = (left + right)/2;
if (left < right)
{
DoStuff(a, left, mid);
DoStuff(a, mid + 1, right);
Combine (a, left, mid, right);

! Merge Sort!

2/9/09 C8380 Algorithm Design and Analysis 6

Merge Sort

* What was the
running time
of the Merge
procedure in

for j<1 to n,
Merge Sort? do R[j]«< Alq+ /]

Lin +1]< =

R[n, +1] < =
i1
j<1
for k< p to r
do if L[i]=R[/]
then A[k]< L[i]
i—i+l

else Alk]< R[j]
O(n) v
2/9/09 CS380 Algorithm Design and Analysis 7
Merge Sort

MERGE-SORT (A, p, r)
V p & r are indices into the array (p < r)
ifp<r VCheck for base case
then q < |(p + r) / 2] VDivide
MERGE-SORT (A, p, q) VConquer
MERGE-SORT (A, g + 1, r) VConquer
MERGE (A, p, g, r) VCombine

2/9/09 C8380 Algorithm Design and Analysis 8

Recurrence Relation

* Let T(n) be the time for Merge-Sort to
execute on an n element array. The time to
execute on a one element array is O(1)

« Then we have the following relationship

2/9/09 C8380 Algorithm Design and Analysis 9

Best Case

A recurrence relation contains two
equations

One for the general case
One for the base case

How does this relate to the time for IsBST to
execute?

2/9/09 8380 Algorithm Design and Analysis 10

Solving Recurrence Relations

To solve the recurrence relation we’ll write n
instead of O(n) as it makes the algebra
simpler:

T(n) =2 T(n/2) + n

2/9/09 C8380 Algorithm Design and Analysis 1"

Recurrence Relations to Remember

T(n) = T(n/2) + O(1)

T(n) = T(n-1) + O(1)

T(n) = 2 T(n/2) + O(1)

T(n) = T(n-1) + O(n)

T(n) = 2 T(n/2) + O(n)

2/9/09 C8380 Algorithm Design and Analysis 12

Your Turn

+ Solve the following recurrence relation using
the expansion (iteration) method

- T(n) = T(n-1) + 2n -1

2/9/09 8380 Algorithm Design and Analysis 13

Approaches to Algorithm Design

 Incremental

o Job is partly done — do a little more, repeat until
done.

+ Divide-and-Conquer (recursive)

o Divide problem into sub-problems of the same
kind.

o For small subproblems, solve, else, solve them
recursively.

o Combine subproblem solutions to solve the
whole thing.

2/9/09 C8380 Algorithm Design and Analysis 14

Problems

* Problem 2-1
* Problem 2-2

2/9/09 C8380 Algorithm Design and Analysis 15

For Next Time

+ So far we've covered chapters 1, 2, and 3.

» We’'ll skip 4 and 5 for now, and start on
chapter 6 next time.

2/9/09 8380 Algorithm Design and Analysis 16

