Selecting the Right Jobs

 A movie star wants to the select the maximum number of staring roles such that no two jobs require his presence at the same time.

Tarjan of the J	ungle	The Four Volume Problem		
The President's Algorist	Steiner's Tree Pr		rocess Terminated	
	Halting State	Programming Challenges		
"Discrete" Mathematics			Calculated Bets	
2/3/09	CS380 Algorithm I	Design and Analysis	1	

The Movie Star Scheduling Problem

- Input: A set *I* of *n* intervals on the line.
- **Output**: What is the largest subset of mutually non-overlapping intervals that can be selected from *I*?
- Give an algorithm to solve the problem?

CS380 Algorithm Design and Analysis

Earliest Job First

2/3/09

2/3/09

- Start working as soon as there is work available:
- EarliestJobFirst(I)
 - Accept the earliest starting job *j* from *l* that does not overlap any previously accepted job, and repeat until no more such jobs remain.

CS380 Algorithm Design and Analysis

• Is this algorithm correct?

First Job to Complete

- Take the job with the earliest completion date:
- OptimalScheduling(I)
 - While($I \neq \emptyset$) do

2/3/09

2/3/09

2/3/09

- Accept job *j* with the earliest completion date.

CS380 Algorithm Design and Analysis

- Delete *j*, and whatever intersects *j* from *l*.
- · Is this algorithm correct?

Demonstrating Incorrectness

- Searching for counterexamples is the best way to disprove the correctness of a heuristic.
- Think about all small examples.
- Think about examples with ties on your decision criteria (e.g. pick the nearest point).
- Think about examples with extremes of big and small.

CS380 Algorithm Design and Analysis

Induction and Recursion

- Failure to find a counterexample to a given algorithm does not mean "it is obvious" that the algorithm is correct.
- Mathematical induction is a very useful method for proving the correctness of recursive algorithms.
- Recursion and induction are the same basic idea: (1) basis case, (2) general assumption, (3) general case.

CS380 Algorithm Design and Analysis

Best Case, Average Case, Worst Case, Oh My!

• How can we modify almost any algorithm to have a good best-case running time?

CS380 Algorithm Design and Analysis

- Sorting Example.
- Traveling salesman example.
- A trick used by many!

Best Case

2/3/09

- Too easy to cheat with best case.
- We do not rely it on much.

Average Case

2/3/09

2/3/09

• Usually *very hard* to compute the average running time.

CS380 Algorithm Design and Analysis

CS380 Algorithm Design and Analysis

• Very time consuming.

Worst Case

- Fairly easy to analyze.
- Often close to the average running time.

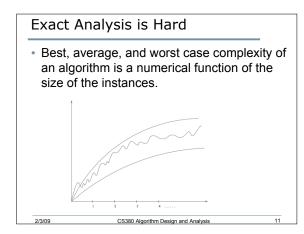
CS380 Algorithm Design and Analysis

10

12

More informative.

2/3/09



Exact Analysis is Hard

2/3/09

- It is difficult to work with *exactly* because it is typically very complicated.
- It is cleaner and easier to talk about *upper and lower bounds* of the function.
- Remember that we ignore constants.
 - This makes sense since running our algorithm on a machine that is twice as fast will affect the running time by a multiplicative constant of 2, we are going to have to ignore constant factors anyway.

CS380 Algorithm Design and Analysis

Asymptotic Notation

 Asymptotic notation (O, Θ, Ω) are the best that we can practically do to deal with the complexity of functions.

Bounding Functions

2/3/09

2/3/09

 g(n) = O(f(n)) means C x f(n) is an upper bound on g(n).

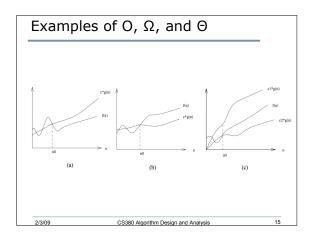
CS380 Algorithm Design and Analysis

13

14

- g(n) = Ω(f(n)) means C x f(n) is a lower bound on g(n).
- g(n) = Θ(f(n)) means C₁ x f(n) is an upper bound on g(n) and C₂ x f(n) is a lower bound on g(n).
- C, C₁, and C₂ are all constants independent of n.

CS380 Algorithm Design and Analysis



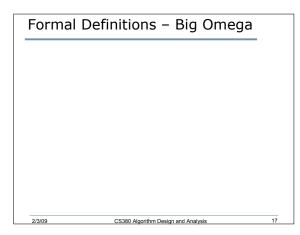
Formal Definitions – Big Oh

2/3/09

- f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or below c.g(n).
- Think of the equality (=) as meaning *in the* set of functions.

CS380 Algorithm Design and Analysis

16



Formal Definitions – Big Theta	
	_
2/3/09 CS380 Algorithm Design and Analysis	11

Logarithms

- It is important to understand deep in your bones what logarithms are and where they come from.
- A logarithm is simply an inverse exponential function. Saying b^x = y is equivalent to saying that x = log_b y.

CS380 Algorithm Design and Analysis

19

21

Logarithms

2/3/09

2/3/09

- Exponential functions, like the amount owed on a n year mortgage at an interest rate of c% per year, are functions which grow distressingly fast, as anyone who has tried to pay off a mortgage knows.
- Thus inverse exponential functions, ie. logarithms, grow refreshingly slowly.

Examples of Logarithmic Functions

CS380 Algorithm Design and Analysis

- Binary search is an example of an O(lg n) algorithm. After each comparison, we can throw away half the possible number of keys.
- Thus twenty comparisons suffice to find any name in the million-name Manhattan phone book!
- If you have an algorithm which runs in O(Ig n) time, take it, because this is blindingly fast even on very large instances.

2/3/09 CS380 Algorithm Design and Analysis

Another Sorting Algorithm

- What was the running time of insertion sort?
- Can we do better?

Designing Algorithms

• Many ways to design an algorithm:

 Incremental: This is what we did with insertion sort. Having sorted the subarray, we insert a single element in its correct position.

22

23

24

 Divide and Conquer: Here the problem is broken up into subproblems that are similar to the original problem but smaller in size. The subproblems are solved recursively then combined to give a solution to the original problem. Merge sort is an example of a divide and conquer algorithm.

Divide and Conquer

- <u>Divide</u> the problem into a number of subproblems
- <u>Conquer</u> the subproblems by solving them recursively
- <u>Combine</u> the subproblem solutions to give a solution to the original problem

Merge Sort

25

26

27

Example

 How would the following array (n=11) be sorted? Since we are sorting the full array, p=1 and r = 11.

4 7 2 6 1 4 7 3 5 2 6

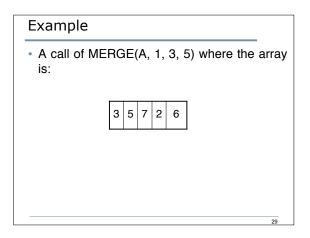
- What would the initial call to MERGE-SORT look like?
- What would the next call to MERGE-SORT look like?
- · What would the one after that look like?

The Merge Procedure

- Input: Array A and indices p, q, r such that
 - $\circ p \le q < r$
 - Subarray A[p..q] is sorted and subarray A[q+1..r] is sorted. Neither subarray is empty
- Output: The two subarrays are merged into a single sorted subarray in A[p..r]

The Merge Procedure

 $\begin{array}{l} \underbrace{\text{VERGE}(A, p, q, r)}{n_i \leftarrow q - p + 1} \\ n_i \leftarrow r - q \\ \text{create arrays } L[1, n_i + 1] \text{and } R[1, n_2 + 1] \\ \hline \text{for } i \leftarrow 1 \text{ to } n_i \\ \hline \text{do } L[i] \leftarrow A[p + i - 1] \\ \hline \text{for } j \leftarrow 1 \text{ to } n_2 \\ \hline \text{do } R[j] \leftarrow A[q + j] \\ L[n_i + 1] \leftarrow \infty \\ i \leftarrow 1 \\ j \leftarrow 1 \\ \hline \text{for } k \leftarrow p \text{ to } r \\ \hline \text{do if } L[i] \leq R[j] \\ \hline \text{then } A[k] \leftarrow L[i] \\ i \leftarrow i + 1 \\ \\ \textbf{else } A[k] \leftarrow R[j] \\ j \leftarrow j + 1 \\ \end{array}$



28

