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Selecting the Right Jobs

• A movie star wants to the select the
maximum number of staring roles such that
no two jobs require his presence at the
same time.
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The Movie Star Scheduling Problem

• Input: A set I of n intervals on the line.

• Output: What is the largest subset of
mutually non-overlapping intervals that can
be selected from I?

• Give an algorithm to solve the problem?

2/3/09 CS380 Algorithm Design and Analysis

3

Earliest Job First

• Start working as soon as there is work
available:

• EarliestJobFirst(I)
o Accept the earliest starting job j from I that does

not overlap any previously accepted job, and
repeat until no more such jobs remain.

• Is this algorithm correct?
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First Job to Complete

• Take the job with the earliest completion
date:

• OptimalScheduling(I)
o While(I ≠ Ø) do

 Accept job j with the earliest completion date.
 Delete j, and whatever intersects j from I.

• Is this algorithm correct?

2/3/09 CS380 Algorithm Design and Analysis

5

Demonstrating Incorrectness

• Searching for counterexamples is the best
way to disprove the correctness of a
heuristic.

•  Think about all small examples.

•  Think about examples with ties on your
decision criteria (e.g. pick the nearest point).

•  Think about examples with extremes of big
and small.
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Induction and Recursion

• Failure to find a counterexample to a given
algorithm does not mean “it is obvious” that
the algorithm is correct.

• Mathematical induction is a very useful
method for proving the correctness of
recursive algorithms.

• Recursion and induction are the same basic
idea: (1) basis case, (2) general assumption,
(3) general case.
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Best Case, Average Case, Worst
Case, Oh My!

• How can we modify almost any algorithm to
have a good best-case running time?

• Sorting Example.

• Traveling salesman example.

• A trick used by many!
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Best Case

• Too easy to cheat with best case.

• We do not rely it on much.
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Average Case

• Usually very hard to compute the average
running time.

• Very time consuming.
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Worst Case

• Fairly easy to analyze.

• Often close to the average running time.

• More informative.
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Exact Analysis is Hard

• Best, average, and worst case complexity of
an algorithm is a numerical function of the
size of the instances.
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Exact Analysis is Hard

• It is difficult to work with exactly because it
is typically very complicated.

• It is cleaner and easier to talk about upper
and lower bounds of the function.

• Remember that we ignore constants.
o This makes sense since running our algorithm

on a machine that is twice as fast will affect the
running time by a multiplicative constant of 2, we
are going to have to ignore constant factors
anyway.
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Asymptotic Notation

• Asymptotic notation (Ο, Θ, Ω) are the best
that we can practically do to deal with the
complexity of functions.
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Bounding Functions

• g(n) = Ο(f(n)) means C x f(n) is an upper
bound on g(n).

•  g(n) = Ω(f(n)) means C x f(n) is a lower
bound on g(n).

•  g(n) = Θ(f(n)) means C1 x  f(n) is an upper
bound on g(n) and C2 x f(n) is a lower bound
on g(n).

C, C1, and C2 are all constants independent of
n.
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Examples of Ο, Ω, and Θ
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Formal Definitions – Big Oh

•                    if there are positive constants
and    such that to the right of    , the value of

  always lies on or below          .

• Think of the equality (=) as meaning in the
set of functions.
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Formal Definitions – Big Omega
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Formal Definitions – Big Theta
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Logarithms

• It is important to understand deep in your
bones what logarithms are and where they
come from.

• A logarithm is simply an inverse exponential
function. Saying bx = y is equivalent to
saying that x = logb y.
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Logarithms

• Exponential functions, like the amount owed
on a n year mortgage at an interest rate of
c% per year, are functions which grow
distressingly fast, as anyone who has tried
to pay off a mortgage knows.

• Thus inverse exponential functions, ie.
logarithms, grow refreshingly slowly.
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Examples of Logarithmic Functions

• Binary search is an example of an O(lg n)
algorithm. After each comparison, we can
throw away half the possible number of
keys.

• Thus twenty comparisons suffice to find any
name in the million-name Manhattan phone
book!

• If you have an algorithm which runs in O(lg
n) time, take it, because this is blindingly fast
even on very large instances.
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Another Sorting Algorithm

• What was the running time of insertion sort?

• Can we do better?
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Designing Algorithms

• Many ways to design an algorithm:
o Incremental: This is what we did with insertion sort.

Having sorted the subarray, we insert a single element in
its correct position.

o Divide and Conquer: Here the problem is broken up into
subproblems that are similar to the original problem but
smaller in size. The subproblems are solved recursively
then combined to give a solution to the original problem.
Merge sort is an example of a divide and conquer
algorithm.
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Divide and Conquer

• Divide the problem into a number of
subproblems

• Conquer the subproblems by solving them
recursively

• Combine the subproblem solutions to give a
solution to the original problem
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Merge Sort

• Merge Sort is an example of a divide and conquer
algorithm
MERGE-SORT(A, p, r)

∇ p & r are indices into the array (p < r)

if p < r              ∇Check for base case

  then q ← (p + r) / 2    ∇Divide

    MERGE-SORT(A, p, q)     ∇Conquer

    MERGE-SORT(A, q + 1, r) ∇Conquer

    MERGE(A, p, q, r)       ∇Combine
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Example

• How would the following array (n=11) be sorted?
Since we are sorting the full array, p=1 and r = 11.

• What would the initial call to MERGE-SORT look
like?

• What would the next call to MERGE-SORT look
like?

• What would the one after that look like?

4 7 2 6 1 4 7 3 5 2 6 
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The Merge Procedure

• Input: Array A and indices p, q, r such that
o p ≤ q < r
o Subarray A[p..q] is sorted and subarray A[q+1..r]

is sorted. Neither subarray is empty

• Output: The two subarrays are merged into
a single sorted subarray in A[p..r]
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The Merge Procedure
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Example

• A call of MERGE(A, 1, 3, 5) where the array
is:

62753
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For Next Time

• Read Chapter 3 from the book.

• Get a good start on assignment 1.


