
1

2/3/09 CS380 Algorithm Design and Analysis 1

Algorithm Design and Analysis

shereen@pacificu.edu

2/3/09 CS380 Algorithm Design and Analysis 2

What is an Algorithm?

• A sequence of computational steps that
transforms the input into the desired output.

• To be interesting, an algorithm has to solve
a general, specified problem. An algorithmic
problem is specified be describing the set of
instances that it must work on and the
desired properties of the output.

2/3/09 CS380 Algorithm Design and Analysis 3

Performance

• Algorithms is the study of computer-program
performance

• What is more important than performance in
computer programs?
o

o

o

o

o

2

2/3/09 CS380 Algorithm Design and Analysis 4

Why Study Algorithms?

•

•

•

•

•

•

•

2/3/09 CS380 Algorithm Design and Analysis 5

Example: Sorting

• Input: A sequence of n numbers <a1, a2,
…, an>

• Output: A permutation (reordering) <a'1,
a'2, …, a'n> of the input sequence such
that a'1 ≤ a'2 ≤ … ≤ a'n

• We seek algorithms that are correct and
efficient

2/3/09 CS380 Algorithm Design and Analysis 6

Correctness

• For any algorithm, we must prove that it
always returns the desired output for all legal
instances of the problem.

• What does this mean for sorting?

3

2/3/09 CS380 Algorithm Design and Analysis 7

Correctness is Not Obvious!

• Suppose you have a robot arm equipped
with a tool, say a soldering iron. To enable
the robot arm to do a soldering job we must
construct an ordering of the contact points
so the robot visits (and solders) the first
contact point, then visits the second point,
third, and so forth until the job is done.

• Since robots are expensive, we need to find
the order which minimizes the time (ie. travel
distance) it takes to assemble the circuit
board.

2/3/09 CS380 Algorithm Design and Analysis 8

Correctness is Not Obvious!

• You are given the job to program the robot
arm. Give me an algorithm to find the best
tour.

2/3/09 CS380 Algorithm Design and Analysis 9

Nearest Neighbor Tour

• A very popular solution starts at some point p0 and
then walks to its nearest neighbor p1 first, then
repeats from p1, etc. until done.

• Pick and visit an initial point p0

• p = p0

• i = 0

• While there are still unvisited points
o i = i + 1
o Let pi be the closest unvisited point to pi-1

o Visit pi

• Return to p0 from pi

4

2/3/09 CS380 Algorithm Design and Analysis 10

Nearest Neighbor Tour

2/3/09 CS380 Algorithm Design and Analysis 11

Closest Pair Tour

• In this case we repeatedly connect the closest pair
of points whose connection will not cause a cycle
or a three-way branch to be formed, until we have
a single chain with all the points in it.

Let n be the number of points in the set
d = ∞
For i = 1 to n-1 do

For each pair of endpoints (x, y) of partial paths
If dist(x, y) ≤ d then

xm = x, ym = y, d = dist(x, y)

Connect (xm, ym) by an edge

Connect the two endpoints by an edge

2/3/09 CS380 Algorithm Design and Analysis 12

Closest Pair Tour

• So, is there a correct algorithm to solve this
problem?

5

2/3/09 CS380 Algorithm Design and Analysis 13

A Correct Algorithm

2/3/09 CS380 Algorithm Design and Analysis 14

Expressing Algorithms

• What are the possible ways to express an
algorithm?
o English

o Pseudocode

o Programming Language

2/3/09 CS380 Algorithm Design and Analysis 15

The RAM Model

• Algorithms can be studied in a machine and
language independent way.

• Each “simple” operation (+, -, =, if, call)
takes exactly one step.

• Loops and subroutines are not simple
operations.

• Each memory access takes one step.

6

2/3/09 CS380 Algorithm Design and Analysis 16

Best, Worst, and Average-Case

• Worst case: is the function defined by the
maximum number of steps taken on any
instance of size n.

• Best case: is the function defined by the
minimum number of steps taken on any
instance of size n.

• Average case: is the function defined by an
average number of steps taken on any
instance of size n.

2/3/09 CS380 Algorithm Design and Analysis 17

Insertion Sort

• INSERTION-SORT(A,n) ∇ A[1..n]

1 for j ← 2 to n

2 do key ← A[j]

3 ∇ Insert A[j]

4 i ← j – 1

5 while i > 0 and A[i] > key

6 do A[i+1] ← A[i]

7 i ← i – 1

8 A[i+1] ← key

2/3/09 CS380 Algorithm Design and Analysis 18

Example

• How would insertion sort work on the
following numbers?
o 3 1 7 4 8 2 6

7

2/3/09 CS380 Algorithm Design and Analysis 19

Your Turn

• Problem: How would insertion sort work on
the following characters to sort them
alphabetically (from A -> Z)? Show each
step.
o S O R T E D

2/3/09 CS380 Algorithm Design and Analysis 20

Insertion Sort

• Is the algorithm correct?

• How efficient is the algorithm?

• How does insertion sort do on sorted
permutations?

• How about unsorted permutations?

2/3/09 CS380 Algorithm Design and Analysis 21

Analysis of Insertion Sort

• Best Case

8

2/3/09 CS380 Algorithm Design and Analysis 22

Analysis of Insertion Sort

• Worst Case

2/3/09 CS380 Algorithm Design and Analysis 23

For Next Time

• Read Chapters 1 and 2 from the book.

