
Date Assigned: Tuesday, March 31, 2009 

Date Due: Thursday, April 9, 2009 

Total Points: 45pts 

For this assignment, you are to implement an anagram game. The game will present a word to 

the user and the user must try and come up with as many anagrams for that word as possible. 

 

For example, if the program produces the word “tar”, the user could guess the word “art” and 

“rat”. The user can play as many times as they like and you are to keep a running score of how 

they did. For every correct word that they produce you should add 5 points to their score, and for 

every incorrect word you should subtract 5 points. The user should be given the option of ending 

a round at any time, and ending the game after ending any round. 

 

For the purpose of this assignment, we are only interested in words that appear in the dictionary. 

The dictionary that we are using is the Scrabble TWL dictionary of four letter words. It is freely 

available from http://members.ozemail.com.au/~rjackman/4fours.html and I have also placed it 

on the CS380 public folder on Turing. 

 

Since we will be performing multiple anagram queries, our first step is to load all of the words in 

the TWL into an appropriate data structure. A primary requirement is that one must be able to 

efficiently search this data structure to look for anagrams of a given word. 

 

A clever trick that we will use to facilitate this is to work with alphagrams of words, not just the 

words themselves. The alphagram of a word (or any group of letters) consists of those letters 

arranged in alphabetical order, and is the way expert Scrabble players sort the tiles on their rack. 

So, the alphagram for the string “toxic" is “ciotx", similarly the alphagram for both “star" and 

“rats" is “arst". 

 

Now what we will do is store words and their alphagrams into a hash table. For each word, we 

will compute its alphagram. We will treat the alphagram as the key, and the word as the value of 

a <key, value> pair. Each pair is then inserted into a hash table, where the hash is applied on the 

key, but the entire pair is stored. This approach guarantees that all words which are anagrams of 

one another are stored in the same bucket of the hash table, since those words have common 

alphagrams. It will be helpful to define a new Word class to store the pairs and provide any 

additional Word functionality. 

 

You should feel free to use the methods described in class and in the text for appropriate hash 

functions for hashing strings (but please cite any source which you use). 



• Submit an electronic copy of your project by 9:15am on the day that it is due. Name your 

project “04PUNETAnagram”, replacing PUNET with your PU Net ID (i.e. khoj0332). 

• A summary of the time that you spent working on this assignment, and what slowed you 

down the most. Submit this document electronically as a Google Document called 

“04PUNetAnagram” for example “04Anagram”. Create the Google document and share 

it with me at ShereenKhoja@gmail.com. 

 


