
Date Assigned: Tuesday, February 17, 2009

Part 1 Due: Tuesday, February 24, 2009

Part 2 Due: Tuesday, March 3, 2009

Total Points: 40pts (15 points for part 1, 25 points for part 2)

Interactive time-shared computer systems often encounter a problem in scheduling I/O tasks for

a magnetic disk. It is common to find such systems serving many terminals but having only one,

or perhaps a few magnetic disk drives.

For example, such a system might service 200 terminals at any one time and have a single

magnetic disk of several hundred gigabytes capacity. At any time the users could be running

programs, compiling programs, and text editing where each of these activities could and do

generate a mix of I/O requests.

The servicing of these requests can create a bottleneck that substantially affects the system

performance. The I/O requests generated by all of the computing activities of the users are

intermixed and at any time the disk can expect to have a group of I/O requests waiting for

execution. Since disks can only handle one request at a time, the requests must be put into some

order for service. The order chosen, called the disk-scheduling policy, is the subject of this

assignment.

For this assignment, we will consider the disk to be a single platter or surface with a read/write

head that can move radially across the surface of the disk. The disk surface is divided up into a

set of concentric circles called tracks and each track is divided into segments called sectors.

1

Our disk for this assignment has 200 tracks (0 - 199) and 20 sectors (0 - 19) per track. By the

time an I/O request arrives from the user to the disk, it takes the following form:

r1 = (id#,R/W,Sr,Tr)

where id# - is the user's unique identification number (0 - 47)

 R/W - is the request to read or write to the disk

 Sr - is the sector number (0 - 19)

 Tr - is the track number (0 - 199)

The time (t) that it takes the disk to satisfy an I/O request is the sum of three component times:

Ti/o = Tseek + Trotation + Ttransmit

where Tseek - is a linear function of the number of tracks that

 the head must cross in order to get from its

 current track Tinitial to the track Ttarget which

 contains the sector it is to read or write.

 Trotation - some constant time

 Ttransmit - some constant time

You are to write a C++ program using object-oriented design that will test the following disk

scheduling policy:

Shortest Seek Time First (SSTF) - This policy uses a priority queue of I/O requests determined

by the distance between the target track and the track on which the read head is currently

positioned: priority = abs(Tr - Tcurrent). The disk head will always be moved the shortest

distance to the next I/O request thereby spending less time seeking and more time transmitting

data.

Notes:

1. Implement your general priority queue using a max heap stored as a vector. I have

provided you with a header file for the priority queue called “MaxHeap.h”, and you must

implement the definitions for all of the functions listed in a file called “MaxHeap.cpp”.

Do not change any of the function names or data types.

2. To implement the special details of the priority queue used for disk scheduling, such as

updating all of the priorities, you will need to subclass “MaxHeap.h” with a new class

called “DiskSchedulingHeap.h” for example. Add any specialized functions and/or data

to this class.

3. I have provided you with a file “Node.h” containing an abstract class with three pure

virtual functions that must be overloaded. These are comparator to compare the current

node with the one passed in, changeKey to change the key of the current node and

outputNode to output the contents of the current node. You must subclass “Node.h” to

hold the contents of the specific node for disk scheduling and implement the pure virtual

functions. If you want to be adventurous, make comparator an overload of the > operator.

4. Initialize your request queue from the data in the file “init.dat”. This will give the effect

of having several I/O requests queued up. Also, initialize each of the node's waiting time

to 0. Next you are to read a line of data from the file “diskio.dat”, queue up the request

using the disk scheduling policy, and then process a request. Proceed in this manner until

the request queue is empty and the file is at EOF. You will encounter the EOF first.

5. Assume that the read/write head starts at track 0.

6. The “init.dat” file requests’ id numbers will be in the 0-47 range. Further, this file could

be empty.

7. The files can contain multiple requests with the same id.

8. Assuming that the disk head is on track 100 and needs to go to 105, then the tracks

crossed is 5.

9. The wait time is simply the number of requests the current request had to wait before

being processed. The calculation of wait time does not include tracks crossed.

10. Do not take the sector number into account when determining priority. If two requests

have the same priority, take the request that was queued up first.

11. All of your output will be displayed to the screen for this assignment.

12. Do NOT use structs in this assignment.

Warning: This is not a last minute assignment. You should begin working on this assignment

today so that you have plenty of time to iron out any problems you may encounter.

This assignment will also hone your skills in object-oriented design. I encourage you to come

and talk to me about the design of your program. Part of your grade will be allocated to how well

you designed your program.

• Implement the complete class MaxHeap to perform all of the standard heap and priority

queue operations.

• Subclass the Node class to hold the data needed for an integer priority queue and

implement the virtual functions. You can add any other functions that you might need.

• Write a driver to test your implementations. The driver should do the following:

o Read the following integers one at a time from a file and insert them into

MaxHeap: <5, 3, 17, 10, 84, 19, 6, 22, 9>, then display the heap to ensure that the

result is indeed a max heap.

o Display the result of calling the function heapMaximum.

o Display the heap after calling the function heapExtract on the heap.

o Display the heap after calling the function insert with the value 20.

• Submit an electronic copy of your project by 9:40am on the day that it is due. Name your

project “02PUNETMaxHeap”, replacing PUNET with your PU Net ID (i.e. khoj0332).

• Submit a hard copy of the files starting with the file containing main, followed by the

other classes where the header file of a class is always just before the cpp file.

• A summary of the time that you spent working on this assignment, and what slowed you

down the most. Submit this document electronically as a Google Document called

“02PUNetPart1” for example “02khoj0332Part1”. Create the Google document and share

it with me at ShereenKhoja@gmail.com.

Your program must use the data found in the files “init.dat” and “diskio.dat” and report on the

following:

• The total number of requests that were processed.

• The total number of tracks the read/write head had to move to process all of the I/O

requests.

• The average number of tracks the read/write head had to move for each I/O request.

• The maximum number of requests that any of the I/O requests had to wait before being

scheduled. Include the identification number of the I/O request that had the longest wait.

• Show what happened at each step of the disk scheduling policy. Headings should be as

follows:

ID# R/W Sector Track Tracks Crossed Wait Time

--- --- ------ ----- -------------- ---------

• Submit an electronic copy of your project by 9:40am on the day that it is due. Name your

project “02PUNETDiskScheduling”, replacing PUNET with your PU Net ID (i.e.

khoj0332).

• Submit a hard copy of the files starting with the file containing main, followed by the

other classes where the header file of a class is always just before the cpp file. All the

files must be submitted, even if they haven’t changed from part 1.

• A summary of the time that you spent working on this assignment, and what slowed you

down the most. Submit this document electronically as a Google Document called

“02PUNetPart2” for example “02khoj0332Part2”. Create the Google document and share

it with me at ShereenKhoja@gmail.com.

//***
 // File name: Node.h
 // Author: Shereen Khoja
 // Date: 02/16/2009
 // Class: CS380
 // Assignment: Disk Scheduling
 // Purpose: This is the header file for the abstract Node class.
 //***

 #ifndef NODE_H
 #define NODE_H

 class Node
 {
 public:

 // Function to compare the current Node with the passed in Node
 // It will return true if the current Node is larger than the passed in
 // Node, and false otherwise

 virtual bool comparator(Node*) = 0;

 // Function to change the key of the Node to the passed in argument
 // The argument is a void* since the key of the Node is dependent upon
 // the implementation

 virtual void changeKey(void*) = 0;

 // Function to output the contents of the Node. This will be called
 // by the function displayHeap in the class MaxHeap

 virtual void outputNode() = 0;
 };
 #endif

//***
 // File name: MaxHeap.h
 // Author: Shereen Khoja
 // Date: 02/16/2009
 // Class: CS380
 // Assignment: Disk Scheduling
 // Purpose: This is the header file for the Max Heap class.
 //**
 #ifndef MAXHEAP_H
 #define MAXHEAP_H

 #include "Node.h"
 #include <vector>

 using namespace std;

 class MaxHeap
 {
 protected:

 // The heap stored as a vector of Node*'s

 vector<Node*> heapArray;

 public:

 // Constructor that places a null pointer at element 0 of the vector
 // This is so that the root of the heap will be located at node 1
 // and you can use the algorithms in the book

 MaxHeap()
 {
 Node* pTemp = NULL;
 heapArray.push_back(pTemp);
 }

 // Destructor for MaxHeap that will delete all of the Node*'s
 // You will NOT have to delete this pointers in your driver

 ~MaxHeap()
 {
 for(int i = 0; i < (int) heapArray.size(); i++)
 {
 delete heapArray[i];
 }
 heapArray.clear();
 }

 // Function to insert a new node into the heap and maintain
 // the heap property

 void insert(Node*);

 // Function that will display the heap. Note that this function will call
 // the Node display function to display the heap to either a file or the
 // screen as specified in Node

 void displayHeap();

 // Function to build a heap from the current vector

 void buildHeap();

 // Function to maintain the heap property starting from the given index

 void heapify(int i);

 // Function to remove the root of the heap and return it to the calling
 // function

 Node* heapExtract();

 // Function to return the root of the heap but NOT remove it from the heap

 Node* heapMaximum();
 };

 #endif

