
1

10/4/05 CS360 Windows Programming 1

Windows Forms

10/4/05 CS360 Windows Programming 2

Windows Forms

• Programming model used to write GUI
applications for the .NET Framework

• Look like ordinary Windows applications
o Windows

o Incorporate common GUI elements
 Menus
 Controls
 Dialog boxes

• They’re managed applications

10/4/05 CS360 Windows Programming 3

Windows Applications

• Event-driven
o Wait for system to deliver input

o React to input

o Return control back to system

• How do the System and Windows
application communicate?
o Windows messages

10/4/05 CS360 Windows Programming 4

Windows Programming

• When user moves mouse, system sends
messages to application

• A special function called the window
procedure processes the message

• What things, other than user interaction, can
create a message?
o Power management

10/4/05 CS360 Windows Programming 5

Message Routing

• Two ways
o Send message to a first-in first-out queue

 System examines the message to determine which
window is supposed to process the message

 Send the message to the proper queue
 From queue, message is sent to the window

procedure

o Send message directly to windows procedure
 Examples include resizing and window activation

10/4/05 CS360 Windows Programming 6

Window Applications

• Each application is made up of several
forms

• Each form will have a window procedure to
process the messages sent to it

• The process that sends the messages to the
windows procedure is known as the
message pump

2

10/4/05 CS360 Windows Programming 7

Messages

• There are two types of messages
o System defined

o Application defined

10/4/05 CS360 Windows Programming 8

Messages

• To identify the message, four parameters
are sent with it
o Window handle: long value used to identify a

specific window. Also called hWnd.

o Message id: named constant to identify the
message. Example is WM_PAINT that tells the
window it needs to repaint itself

o lParam: could contain anything

o wParam: could contain anything

10/4/05 CS360 Windows Programming 9

MFC

• MFC is an object-oriented library built using
C++ that represents basic objects used to
build windows applications

• MFC is organized into a class hierarchy

10/4/05 CS360 Windows Programming 10

Modal and Modeless Forms

• A modal form needs to be closed to access
any other form in an application
o The modal form takes over the execution of the

program and returns only when it is closed

• A modeless form in contrast does not block
the execution of the program

10/4/05 CS360 Windows Programming 11

Project (modeless) on Turing
using System.Windows.Forms;
public class MyForm : Form
{
 public MyForm()
 {
 this.Text = "Hello world";
 this.Size = new System.Drawing.Size(500, 500);
 this.FormBorderStyle = FormBorderStyle.Fixed3D;
 }
 static void HandleClosing(object sender,
 System.ComponentModel.CancelEventArgs e)
 {
 MessageBox.Show("The form is closing");
 }
 static void Main()
 {
 MyForm myForm = new MyForm();
 myForm.Closing +=
 new System.ComponentModel.CancelEventHandler(HandleClosing);
 Application.Run(myForm);
 }
}

10/4/05 CS360 Windows Programming 12

Project (modal) on Turing
public class WarningForm : Form
{
 public WarningForm()
 {
 Button yesButton = new Button();
 Button noButton = new Button();
 yesButton.Text = "Yes";
 yesButton.Location = new System.Drawing.Point(10, 10);
 noButton.Text = "No";
 noButton.Location = new System.Drawing.Point(yesButton.Right +
 10, yesButton.Top);
 yesButton.DialogResult = DialogResult.Yes;
 noButton.DialogResult = DialogResult.No;
 this.Text = "Are you sure you want to close?";

 this.Size = new System.Drawing.Size(300, 100);

 this.Controls.Add(yesButton);
 this.Controls.Add(noButton);
 }
}

3

10/4/05 CS360 Windows Programming 13

Project (modal) on Turing
public class MyForm : Form
{
 public MyForm()
 {
 this.Text = "Hello world";
 this.Size = new System.Drawing.Size(500, 500);
 this.FormBorderStyle = FormBorderStyle.Fixed3D;
 }

 static void HandleClosing(object sender,
 System.ComponentModel.CancelEventArgs e)
 {
 WarningForm modalForm = new WarningForm();
 if(modalForm.ShowDialog() == DialogResult.No)
 {
 e.Cancel = true;
 }
 else
 {
 }
 }

10/4/05 CS360 Windows Programming 14

Project (modal) on Turing

static void Main()

 {

 MyForm myForm = new MyForm();

 myForm.Closing +=

 new

 System.ComponentModel.CancelEventHandler(HandleClosing);

 Application.Run(myForm);

 }

10/4/05 CS360 Windows Programming 15

Drawing in a Form

• Graphics is the main class used to draw in
forms

• The method OnPaint redraws or repaints the
form

10/4/05 CS360 Windows Programming 16

Project (painting) on Turing
 protected override void OnPaint(PaintEventArgs e)
 {
 Pen pen = new Pen(Color.Black);
 e.Graphics.DrawRectangle(pen, 10, 10, 390, 90);
 SolidBrush solid = new SolidBrush(Color.Red);
 e.Graphics.FillRectangle(solid, 10, 110, 390, 90);
 e.Graphics.DrawRectangle(pen, 10, 110, 390, 90);
 Rectangle rect = new Rectangle(10, 210, 390, 90);
 LinearGradientBrush gradient = new
 LinearGradientBrush(rect, Color.Thistle,
 Color.Tomato, LinearGradientMode.Horizontal);
 e.Graphics.FillRectangle(gradient, rect);
 e.Graphics.DrawRectangle(pen, rect);
 pen.Dispose();
 solid.Dispose();
 }

10/4/05 CS360 Windows Programming 17

Coordinates and Transformations

• x and y coordinates are used to determine
the location of the drawing objects

• 0, 0 is the top, left point

• These are world coordinates

• Translation moves an object to another
location

• Transform moves the object by an angle

10/4/05 CS360 Windows Programming 18

Project (transformations) on Turing
 protected override void OnPaint(PaintEventArgs e)

 {

 SolidBrush brush = new SolidBrush(Color.Red);

 e.Graphics.TranslateTransform(100.0f, 100.0f);

 e.Graphics.RotateTransform(-30.0f);

 e.Graphics.FillRectangle(brush, 0, 0, 200, 100);

 brush.Dispose();

 }

4

10/4/05 CS360 Windows Programming 19

Project (clock) on Turing

• See handout

• What happens if we delete line 10?

• On line 32, why is hour %12?

• On line 26, why is the rectangle drawn at
location 85, -5?

• On line 68, what are the points being passed
into the FillPolygon function?

10/4/05 CS360 Windows Programming 20

Controls

• The System.Windows.Forms namespace
defines a class called Control

• Any visual element of an
application—whether it is a window, a
button, a toolbar, or a custom user-defined
control—is represented by an object of some
class deriving from Control

10/4/05 CS360 Windows Programming 21

Controls

10/4/05 CS360 Windows Programming 22

Designer

• When creating forms in the design view, code is generated for us
• Adding a button will generate
private System.Windows.Forms.Button button1;
...
private void InitializeComponent()
{
 ...
 this.button1 = new System.Windows.Forms.Button();
 ...
 this.button1.Location = new
 System.Drawing.Point(8, 8);
 this.button1.Name = "button1";
 this.button1.Size = new
 System.Drawing.Size(104, 32);
 this.button1.TabIndex = 0;
 this.button1.Text = "button1";
 ...
}

10/4/05 CS360 Windows Programming 23

Docking and Anchoring

• When adding controls to a form in the design
view, the locations are fixed
o Try resizing the form when it’s running

• By anchoring, you can fix the control in any
of the four directions (N, S, E, W). The
control will not move in that direction when
resizing

• You can use the dock to attach the control to
any of the four directions (N, S, E, W)

10/4/05 CS360 Windows Programming 24

Project (Windows Forms) on Turing

• Let’s work on the above project

