
1

10/4/05 CS360 Windows Programming 1

Windows Forms

10/4/05 CS360 Windows Programming 2

Windows Forms

• Programming model used to write GUI
applications for the .NET Framework

• Look like ordinary Windows applications
o Windows

o Incorporate common GUI elements
 Menus
 Controls
 Dialog boxes

• They’re managed applications

10/4/05 CS360 Windows Programming 3

Windows Applications

• Event-driven
o Wait for system to deliver input

o React to input

o Return control back to system

• How do the System and Windows
application communicate?
o Windows messages

10/4/05 CS360 Windows Programming 4

Windows Programming

• When user moves mouse, system sends
messages to application

• A special function called the window
procedure processes the message

• What things, other than user interaction, can
create a message?
o Power management

10/4/05 CS360 Windows Programming 5

Message Routing

• Two ways
o Send message to a first-in first-out queue

 System examines the message to determine which
window is supposed to process the message

 Send the message to the proper queue
 From queue, message is sent to the window

procedure

o Send message directly to windows procedure
 Examples include resizing and window activation

10/4/05 CS360 Windows Programming 6

Window Applications

• Each application is made up of several
forms

• Each form will have a window procedure to
process the messages sent to it

• The process that sends the messages to the
windows procedure is known as the
message pump

2

10/4/05 CS360 Windows Programming 7

Messages

• There are two types of messages
o System defined

o Application defined

10/4/05 CS360 Windows Programming 8

Messages

• To identify the message, four parameters
are sent with it
o Window handle: long value used to identify a

specific window. Also called hWnd.

o Message id: named constant to identify the
message. Example is WM_PAINT that tells the
window it needs to repaint itself

o lParam: could contain anything

o wParam: could contain anything

10/4/05 CS360 Windows Programming 9

MFC

• MFC is an object-oriented library built using
C++ that represents basic objects used to
build windows applications

• MFC is organized into a class hierarchy

10/4/05 CS360 Windows Programming 10

Modal and Modeless Forms

• A modal form needs to be closed to access
any other form in an application
o The modal form takes over the execution of the

program and returns only when it is closed

• A modeless form in contrast does not block
the execution of the program

10/4/05 CS360 Windows Programming 11

Project (modeless) on Turing
using System.Windows.Forms;
public class MyForm : Form
{
 public MyForm()
 {
 this.Text = "Hello world";
 this.Size = new System.Drawing.Size(500, 500);
 this.FormBorderStyle = FormBorderStyle.Fixed3D;
 }
 static void HandleClosing(object sender,
 System.ComponentModel.CancelEventArgs e)
 {
 MessageBox.Show("The form is closing");
 }
 static void Main()
 {
 MyForm myForm = new MyForm();
 myForm.Closing +=
 new System.ComponentModel.CancelEventHandler(HandleClosing);
 Application.Run(myForm);
 }
}

10/4/05 CS360 Windows Programming 12

Project (modal) on Turing
public class WarningForm : Form
{
 public WarningForm()
 {
 Button yesButton = new Button();
 Button noButton = new Button();
 yesButton.Text = "Yes";
 yesButton.Location = new System.Drawing.Point(10, 10);
 noButton.Text = "No";
 noButton.Location = new System.Drawing.Point(yesButton.Right +
 10, yesButton.Top);
 yesButton.DialogResult = DialogResult.Yes;
 noButton.DialogResult = DialogResult.No;
 this.Text = "Are you sure you want to close?";

 this.Size = new System.Drawing.Size(300, 100);

 this.Controls.Add(yesButton);
 this.Controls.Add(noButton);
 }
}

3

10/4/05 CS360 Windows Programming 13

Project (modal) on Turing
public class MyForm : Form
{
 public MyForm()
 {
 this.Text = "Hello world";
 this.Size = new System.Drawing.Size(500, 500);
 this.FormBorderStyle = FormBorderStyle.Fixed3D;
 }

 static void HandleClosing(object sender,
 System.ComponentModel.CancelEventArgs e)
 {
 WarningForm modalForm = new WarningForm();
 if(modalForm.ShowDialog() == DialogResult.No)
 {
 e.Cancel = true;
 }
 else
 {
 }
 }

10/4/05 CS360 Windows Programming 14

Project (modal) on Turing

static void Main()

 {

 MyForm myForm = new MyForm();

 myForm.Closing +=

 new

 System.ComponentModel.CancelEventHandler(HandleClosing);

 Application.Run(myForm);

 }

10/4/05 CS360 Windows Programming 15

Drawing in a Form

• Graphics is the main class used to draw in
forms

• The method OnPaint redraws or repaints the
form

10/4/05 CS360 Windows Programming 16

Project (painting) on Turing
 protected override void OnPaint(PaintEventArgs e)
 {
 Pen pen = new Pen(Color.Black);
 e.Graphics.DrawRectangle(pen, 10, 10, 390, 90);
 SolidBrush solid = new SolidBrush(Color.Red);
 e.Graphics.FillRectangle(solid, 10, 110, 390, 90);
 e.Graphics.DrawRectangle(pen, 10, 110, 390, 90);
 Rectangle rect = new Rectangle(10, 210, 390, 90);
 LinearGradientBrush gradient = new
 LinearGradientBrush(rect, Color.Thistle,
 Color.Tomato, LinearGradientMode.Horizontal);
 e.Graphics.FillRectangle(gradient, rect);
 e.Graphics.DrawRectangle(pen, rect);
 pen.Dispose();
 solid.Dispose();
 }

10/4/05 CS360 Windows Programming 17

Coordinates and Transformations

• x and y coordinates are used to determine
the location of the drawing objects

• 0, 0 is the top, left point

• These are world coordinates

• Translation moves an object to another
location

• Transform moves the object by an angle

10/4/05 CS360 Windows Programming 18

Project (transformations) on Turing
 protected override void OnPaint(PaintEventArgs e)

 {

 SolidBrush brush = new SolidBrush(Color.Red);

 e.Graphics.TranslateTransform(100.0f, 100.0f);

 e.Graphics.RotateTransform(-30.0f);

 e.Graphics.FillRectangle(brush, 0, 0, 200, 100);

 brush.Dispose();

 }

4

10/4/05 CS360 Windows Programming 19

Project (clock) on Turing

• See handout

• What happens if we delete line 10?

• On line 32, why is hour %12?

• On line 26, why is the rectangle drawn at
location 85, -5?

• On line 68, what are the points being passed
into the FillPolygon function?

10/4/05 CS360 Windows Programming 20

Controls

• The System.Windows.Forms namespace
defines a class called Control

• Any visual element of an
application—whether it is a window, a
button, a toolbar, or a custom user-defined
control—is represented by an object of some
class deriving from Control

10/4/05 CS360 Windows Programming 21

Controls

10/4/05 CS360 Windows Programming 22

Designer

• When creating forms in the design view, code is generated for us
• Adding a button will generate
private System.Windows.Forms.Button button1;
...
private void InitializeComponent()
{
 ...
 this.button1 = new System.Windows.Forms.Button();
 ...
 this.button1.Location = new
 System.Drawing.Point(8, 8);
 this.button1.Name = "button1";
 this.button1.Size = new
 System.Drawing.Size(104, 32);
 this.button1.TabIndex = 0;
 this.button1.Text = "button1";
 ...
}

10/4/05 CS360 Windows Programming 23

Docking and Anchoring

• When adding controls to a form in the design
view, the locations are fixed
o Try resizing the form when it’s running

• By anchoring, you can fix the control in any
of the four directions (N, S, E, W). The
control will not move in that direction when
resizing

• You can use the dock to attach the control to
any of the four directions (N, S, E, W)

10/4/05 CS360 Windows Programming 24

Project (Windows Forms) on Turing

• Let’s work on the above project

