
1

9/20/05 CS360 Windows Programming 1

File I/O, Arrays

9/20/05 CS360 Windows Programming 2

Last Time

• We began looking at GUI Programming

• Completed talking about exception handling

9/20/05 CS360 Windows Programming 3

File Input/Output

• .NET Framework supports file I/O in the
System.IO namespace

• What is the difference between files and
streams
o File: collection of data stored on a disk with a

name and directory path

o Stream: once a file is opened for reading or
writing it becomes a stream. A stream is
something on which you can perform read and
write operations

9/20/05 CS360 Windows Programming 4

Text File Example
using System;
using System.IO;
public class TextToFile
{
 private const string FILE_NAME = "MyFile.txt";
 public static void Main(String[] args)
 {
 if (File.Exists(FILE_NAME))
 {
 Console.WriteLine("{0} already exists.", FILE_NAME);
 return;
 }
 StreamWriter sr = File.CreateText(FILE_NAME);
 sr.WriteLine ("This is my file.");
 sr.WriteLine ("I can write ints {0} or floats {1}, and

so
 on.", 1, 4.2);
 sr.Close();
 }
}

9/20/05 CS360 Windows Programming 5

Another Example
using System;
using System.IO;
public class StreamsIOApp
{
 public static void Main(string[] args)
 {
 StreamWriter s = new StreamWriter("Foo.txt");
 s.Write("some text or other");
 s.Close();

 StreamReader r = new StreamReader("Foo.txt");
 for(string line = r.ReadLine(); line != null;
 line = r.ReadLine())
 Console.WriteLine(line);
 r.Close();
 }
}

9/20/05 CS360 Windows Programming 6

File I/O

• There are many ways to open and access
files

• There is no best way

• The .NET Framework class library contains
a complete list of file and stream classes

• See page 62

2

9/20/05 CS360 Windows Programming 7

ASCII vs. Binary Files

• What is the difference between ASCII and
binary files?

• Why do we use binary files?

9/20/05 CS360 Windows Programming 8

Number Systems

• Hexadecimal, decimal, and binary

• How do we convert from binary to decimal?

• How do we convert from decimal to binary?

• How do we convert from binary to hex?

• Convert the decimal 512 to Hex
o Convert 512 first to binary

o Convert the binary to hex

9/20/05 CS360 Windows Programming 9

Text Files

• What are characters in a text file stored as?

• What is 62 stored as?

• http://www.lookuptables.com/

9/20/05 CS360 Windows Programming 10

Example

• 32767 represented as a text file:

• Why?

00110010 00110111 00110110 0011011100110011

00110010 00110111 00110110 0011011100110011
50 55 54 5551
2 7 6 73

DecimalBinary Character

9/20/05 CS360 Windows Programming 11

Example

• Decimal 32767 represented as a binary file:

• What is that in Hex?

1111111101111111

9/20/05 CS360 Windows Programming 12

Binary and Text Files

• The difference between binary and text files is the way they
write data to the files

• In binary files, the binary representation of values is written
to the file

o The integer ‘4929067’ which takes 4 bytes in memory will also take
4 bytes in the file

• In case of text file, each value is written as a series of
characters (ASCII or Unicode)

o The integer ‘4929067’ will be written as text and will take 7 bytes in
ASCII encoding and 14 (7 x 2) bytes in Unicode encoding

• Binary files are more efficient for reading and writing of
data for machines while text files are more human
readable.

3

9/20/05 CS360 Windows Programming 13

Example to Write a Binary File
Stream s = new FileStream("Foo.txt", FileMode.Create);
StreamWriter w = new StreamWriter(s);
w.Write("Hello World ");
w.Write(32767);
w.Write(' ');
w.Write(45.67);
w.Close();
s.Close();

Stream t = new FileStream("Bar.dat", FileMode.Create);
BinaryWriter b = new BinaryWriter(t);
b.Write("Hello World ");
b.Write(512);
b.Write(' ');
b.Write(45.67);
b.Close();
t.Close();

9/20/05 CS360 Windows Programming 14

Hex Dump

• Write a program that will read a file and
output the hex values of that file

9/20/05 CS360 Windows Programming 15

Arrays

• Single dimension
int[] myInts = new int[20];
. . .
Console.WriteLine(myInts[i]);

• Multidimension
string[,] myStrings = new string[5,6];
double[,,] myDoubles = new double[3,8,5];
. . .
Console.WriteLine(myDoubles[i,j,k]);

• Jagged
Point[][] myPolygons = new Point[3][];
myPolygons[0] = new Point[10];
myPolygons[1] = new Point[20];
myPolygons[2] = new Point[30];
. . .
for (int x = 0; x < myPolygons[1].Length; x++)
 Console.WriteLine(myPolygons[1][x]);

9/20/05 CS360 Windows Programming 16

Point[][] myPolygons = new Point[3][];
myPolygons[0] = new Point[10];
myPolygons[1] = new Point[20];
myPolygons[2] = new Point[30];

for (int x = 0;
 x < myPolygons[1].Length; x++)
 Console.WriteLine(myPolygons[1][x]);
foreach (Point p in myPolygons[1])
 Console.WriteLine(p);

Note: inside a foreach loop we have
read only access to the array elements.

9/20/05 CS360 Windows Programming 17

• int[] myInts;
o Creates a variable that can point to an array

• myInts = new int[100];
o Creates an array of 100 ints.
o These ints are initialized to 0, and stored, unboxed, in a

memory block on the managed heap.

• Control myControls;
o Creates a variable that can point to an array

• myControls = new Control[100];
o Creates an array of Control references, initialized to

null. Since Control is a reference type, creating the
array creates references—the actual objects are not
created.

9/20/05 CS360 Windows Programming 18

Array Initialization

• Single dimension
o int[] myInts = new int[3] {1, 2, 3};

o int[] myInts = new int[] {1, 2, 3};

o int[] myInts = {1, 2, 3};

4

9/20/05 CS360 Windows Programming 19

Arrays are implicitly derived from
System.Array
• int[] myInts = new int[3] {1, 2, 3};

• double[,,] myDoubles = new double[3,8,5];

• Properties
o myInts.Length is 3
o myInts.Rank is 1
o myDoubles.Length is 120
o myDoubles.Rank is 3
o myDoubles.GetLength(1) is 8

• Static Methods
o Array.Sort(myInts);
o Array.Sort(keys, items);
o Array.Reverse(myInts);
o Array.Clear(myInts);
o int i = Array.IndexOf(myInts, 17);

9/20/05 CS360 Windows Programming 20

Summary

• Completed File I/O

• Arrays

• Covered p. 59-66

