
WinForms Lab  
(developed by Joe Hummel, modified by Shereen Khoja) 

 
Today you'll work in Visual Studio .NET to create your first form-based, 
Windows GUI application.  Your GUI app will display information about 
imaginary employees.  
 
Part 1:  Designing the GUI 
 

 
  
1. Create a new Visual C# Project using the Windows Application 

template. NOT a console application. 
2. The first step is to design the GUI.  The empty form should be visible in 

Visual Studio.  Click anywhere on the form to select it, and then press 
F4 to view the Properties window.  Set the form's Text property (i.e. 
what is displayed in the title bar) to "Employees App".  Then set the 
FormBorderStyle property to "Fixed3D" so the user cannot resize the 
form, and set the StartPosition property to "CenterScreen" so the form is 
centered when first shown.  Here's a nice trick:  if you set the form's 
Font property, the controls will inherit this setting when they are 
dropped on the form!  Go ahead and set the form's Font property to 
12pt, and perhaps Bold as well. 

3. Next, drag-and-drop the necessary controls from the Toolbox onto the 
form as shown above:  a list box, 3 labels, 3 text boxes, and a command 
button.  The line you see is actually another label with its Text property 



set to lots of underscores.  Set the list box's name to lstEmployees (that's 
lower case L); a control's name property is at the top of the Properties 
window list displayed as (Name). Then set the button's name to 
cmdExit, and set the names of the text boxes to txtSalary, txtEmail, and 
txtAvgSalary, respectively.  For each of the label's, set their Text 
property appropriately.  For each of text boxes, set its Text property to 
empty so nothing is displayed in the text box when the form first 
appears.  For the txtAvgSalary text box in particular, also set its 
ReadOnly property to True so that the user will be unable to modify 
this value.  Finally, change the Text property of the command button to 
"Exit". 

4. Click on the form's background to select the form, and then drop-down 
the View menu and select "Tab Order".  Click on the controls in the 
order you want the focus to move when the user presses the tab key; 
when you're satisfied, drop-down the View menu again and deselect 
"Tab Order".  

5. Save your work.  Now run (F5).  While the app doesn't do anything yet, 
it should appear centered, and as you repeatedly press the tab key, the 
focus should move around the form appropriately.  Make sure you 
cannot resize the form.   

 
Part 2:  Programming the GUI to Display Employee Names in List Box 
 
1. First, code the Exit button to end the application.  Double-click on the 

button to reveal its Click event method, and then code this method to 
end the application by programmatically closing the form via 
this.Close(); .  Run and test the button. 

2. Next, let's create an Employee class for holding info about each 
employee.  Add a new class file to your project via the Project menu; 
Visual Studio will generate some boilerplate code for the class which 
you can either delete, or just ignore.  Define each employee to have a 
first name, last name, email address, and salary; these are all strings 
except for the salary, which should be a decimal field (C# has a data 
type called "decimal"). There is some code below that you can copy and 
paste into your program, and the code assumes you have implemented 
a constructor with parameters in that same order. Also implement a 
ToString() method that returns the employee's full name in the format 
"lastname, firstname". For part 3, you will need three additional 
methods, GetEmail() to return the email address, GetSalary() to return 



the salary as a decimal, and GetFormattedSalary() to return the 
employee's salary as a nicely-formatted string like this:  

 
  public string GetFormattedSalary() 
  { 
     return this.Salary.ToString("$#,##0.00"); 
  } 
 
Select "Build Solution" from the Build menu and fix any syntax errors.  
 
3. Now let's create some employee objects and display them in the list box.  

Since we haven't talked about file I/O yet, we'll simply create the 
employee objects by hand with predetermined values.  Double-click on 
the form to reveal the form's Load event method.  Outside and just 
above this method, define a private member field employees of type 
Employee[].  Keep in mind that the form is a class, so it is perfectly legal 
for us to define fields and methods within the form; the employees field 
will be a reference to an array that keeps track of the employees for the 
duration of the application's execution.  Now, inside the form's Load 
event method, just copy and paste this code: 

 
this.employees = new Employee[5]; 
employees[0] = new 
Employee("jim","bag","bag@hotmail.com",1000.00M); 
employees[1] = new 
Employee("jane","doe","doe@aol.com",5000.00M); 
employees[2] = new 
Employee("amy","lore","amy@hotmail.com",123000.00M); 
employees[3] = new 
Employee("brian","lore","brian@hotmail.com",122999.99M); 
employees[4] = new 
Employee("kathie","o'dahl","kathy@hotmail.com",82000.00M); 
   
4. Build and fix any syntax errors.  Once you have the array built, at the 

bottom of the Load event method simply iterate through the array and 
add each employee to the list box using foreach.  Run and behold!  You 
should now see all your employees listed in the list box. 

 
foreach( Employee emp in employees ) 
{ 
 lstEmployees.Items.Add( emp ); 
} 
 



5. The list box display is not sorted.  Stop the application, click on the list 
box, press F4 to view the Properties window, and set the list box's 
Sorted property to True.  Run again, and the attendees should now be 
displayed in sorted order.  

 
Part 3:  Displaying Employee Information 
 
1. The next step is to view employee information when an employee is 

selected in the list box. 
2. Double-click on the list box to reveal its SelectedIndexChanged event 

method.  This event is triggered whenever the user selects an item in the 
list box (in other words, whenever the underlying index of the selected 
item has changed).  The list box lstEmployees has a property (field) 
called SelectedItem, which is either (a) null if nothing is selected, or (b) 
a reference to the selected object.  Type-cast the contents of this property 
into a local variable of type Employee.  If the value is null, clear the 
contents of each text box, otherwise fill the text boxes with the 
employee's info.  When filling a text box, recall that you want to assign 
to the text box's Text property; in the case of an employee's salary, use 
the employee's GetFormattedSalary() method so the text box displays 
their salary in a formatted way.  

 
Employee tempEmp = (Employee) lstEmployees.SelectedItem; 
if( tempEmp == null ) 
{ 

txtSalary.Text = ""; 
     txtEmail.Text = ""; 
} 
else 
{ 

txtSalary.Text = tempEmp.GetFormattedSalary(); 
     txtEmail.Text = tempEmp.GetEmail(); 
} 

 
 
3. Run and test, and you should now be able to click on different 

employees and view their information in the text boxes.  
4. Finally, in the Form class, write a private helper method that loops 

through the array of employees, calculates the average salary, formats it 
as a string, and displays the string in the txtAvgSalary text box.  Call 
this method from the Load event method, run and test.  

 



 


