
1

9/13/05 CS360 Windows Programming 1

Nondeterministic Destruction,
Delegates, and Exceptions

9/13/05 CS360 Windows Programming 2

Last Week

• We
o Looked at interfaces and enumerations

o Covered boxing and unboxing

9/13/05 CS360 Windows Programming 3

Garbage Collection

• The basic idea: memory in the managed heap that
is no longer needed is automatically reclaimed.

• The programmer is not responsible for freeing it.

• Object life cycle:
o Allocate memory

o Initialize the object to a useful state

o Use the object

o Tear the object down

o Free memory

The garbage collector can't
do this

The garbage collector is
solely responsible for this

9/13/05 CS360 Windows Programming 4

C# "Destructors" : the Finalize method

• System.Object has a protected virtual method
Finalize

• Called when the garbage collector determines that the
object is garbage but before the memory is reclaimed

• Types that require cleanup should override this method
(e.g., to close files or network connections)

• In C#, the syntax is like the destructor syntax of C++:
~MyClass()

{ //cleanup here }

• The finalization function is never explicitly called, and
destruction of an object in non-deterministic

9/13/05 CS360 Windows Programming 5

Use Finalization only when necessary

• Finalizable objects take longer to allocate

• Forcing the garbage collector to call a
Finalize method can hurt performance. If
there is an array of 10,000 objects, the
finalization method gets called 10,000 times

• You have no control over when finalization
takes place

• The CLR doesn’t guarantee the order in
which finalization methods are called

9/13/05 CS360 Windows Programming 6

Garbage Collection Example
class MyClass
{
 private int[] array;
 private Helper[] helpers;
 private int n;
 public static int numFinalized = 0;
 public static int numAlloc = 0;
 public MyClass(int num)
 {
 n = num;
 array = new int[n]; //array of n ints
 helpers = new Helper[n]; //array of n Helper refs
 numAlloc++;
 for(int i = 0; i < n; i++)
 {
 array[i] = i;
 helpers[i] = new Helper();
 }

2

9/13/05 CS360 Windows Programming 7

Garbage Collection Example
 ~MyClass()
 {
 numFinalized++;
 Console.WriteLine("Finalize called on MyClass" +
 " {0}, {1} allocated, {2} finalized",
 n, numAlloc, numFinalized);
 }

 public void Print()
 {
 foreach (int i in array)
 Console.Write(i + " ");
 Console.WriteLine();
 }

9/13/05 CS360 Windows Programming 8

Garbage Collection Example
 static void Main(string[] args)
 {
 MyClass mc = new MyClass(101);
 mc = new MyClass(10);
 mc.Print();
 for (int i = 1; i <= 50; i++)
 mc = new MyClass(i * 100);
 Console.ReadLine();
 Console.WriteLine("Bye bye");
 }
 class Helper
 {
 private int[] array = new int[100];
 }
}

9/13/05 CS360 Windows Programming 9

Delegates

• Simplest description: type-safe function
pointers

• Declaring a delegate defines a class that
derives from System.MulticastDelegate,
which derives from System.Delegate

9/13/05 CS360 Windows Programming 10

Delegates

• Delegates maintain a list of methods to be
called when the delegate is invoked

• To insure type safety, the signature (return
type and arguments) of acceptable callback
methods is specified when the delegate
class is defined

• We instantiate a delegate by "wrapping" the
callback method.

• We can add methods to the callback chain
or remove methods from the chain.

9/13/05 CS360 Windows Programming 11

Delegates Example
 class Worker
 {
 public void Advise(Boss boss) { aBoss = boss; }
 public void DoWork()
 {
 Console.WriteLine("Worker: work started");
 if(aBoss != null) aBoss.WorkStarted();

 Console.WriteLine("Worker: work progressing");
 if(aBoss != null) aBoss.WorkProgressing();

 Console.WriteLine("Worker: work completed");
 if(aBoss != null)
 {
 int grade = aBoss.WorkCompleted();
 Console.WriteLine("Worker grade = " + grade);
 }
 }
 private Boss aBoss;
 } 9/13/05 CS360 Windows Programming 12

Delegates Example

 class Boss

 {

 public void WorkStarted() {
 /* boss doesn't care. */ }

 public void WorkProgressing() {
 /* boss doesn't care. */ }

 public int WorkCompleted()

 {

 Console.WriteLine("It's about time!");

 return 2; /* out of 10 */

 }

 }

3

9/13/05 CS360 Windows Programming 13

Delegates Example
 class Universe
 {
 static void Main()
 {
 Worker peter = new Worker();
 Boss boss = new Boss();
 peter.Advise(boss);
 peter.DoWork();

 Console.WriteLine("Main: worker completed work");
 Console.ReadLine();
 }
 }

9/13/05 CS360 Windows Programming 14

Output

9/13/05 CS360 Windows Programming 15

Delegates Example

• What if the worker wanted to advise more
than just their boss

• How can we split the following methods into
an interface:
o WorkStarted

o WorkProgressing

o WorkCompleted

9/13/05 CS360 Windows Programming 16

Delegates Example

interface IWorkerEvents

 {

 void WorkStarted();

 void WorkProgressing();

 int WorkCompleted();

 }

9/13/05 CS360 Windows Programming 17

Delegates Example
 class Worker
 {
 public void Advise(IWorkerEvents events) { theEvents = events; }
 public void DoWork()
 {
 Console.WriteLine("Worker: work started");
 if(theEvents != null) theEvents.WorkStarted();

 Console.WriteLine("Worker: work progressing");
 if(theEvents != null) theEvents.WorkProgressing();

 Console.WriteLine("Worker: work completed");
 if(theEvents != null)
 {
 int grade = theEvents.WorkCompleted();
 Console.WriteLine("Worker grade = " + grade);
 }
 }
 private IWorkerEvents theEvents;
 } 9/13/05 CS360 Windows Programming 18

Delegates Example

 class Boss : IWorkerEvents

 {

 public void WorkStarted() {
 /* boss doesn't care. */ }

 public void WorkProgressing() {
 /* boss doesn't care. */ }

 public int WorkCompleted()

 {

 Console.WriteLine("It's about time!");

 return 3; /* out of 10 */

 }

 }

4

9/13/05 CS360 Windows Programming 19

Delegates Example

9/13/05 CS360 Windows Programming 20

Delegates Example

• Still, his boss complained bitterly. "Peter!"
his boss fumed. "Why are you bothering to
notify me when you start your work or when
your work is progressing?!? I don't care
about those events. Not only do you force
me to implement those methods, but you're
wasting valuable work time waiting for me to
return from the event, which is further
expanded when I am far away! Can't you
figure out a way to stop bothering me?"

9/13/05 CS360 Windows Programming 21

Delegates Example

• Interfaces are not suitable for events

• Break methods out of interface into
separate delegate functions

9/13/05 CS360 Windows Programming 22

Delegates Example

delegate void WorkStarted();

delegate void WorkProgressing();

delegate int WorkCompleted()

9/13/05 CS360 Windows Programming 23

Delegates Example
 class Worker
 {
 public void DoWork()
 {
 Console.WriteLine("Worker: work started");
 if(started != null) started();

 Console.WriteLine("Worker: work progressing");
 if(progressing != null) progressing();

 Console.WriteLine("Worker: work completed");
 if(completed != null)
 {
 int grade = completed();
 Console.WriteLine("Worker grade = " + grade);
 }
 }
 public WorkStarted started;
 public WorkProgressing progressing;
 public WorkCompleted completed;
 }

9/13/05 CS360 Windows Programming 24

Delegates Example
 class Boss
 {
 public int WorkCompleted()
 {
 Console.WriteLine("Better...");
 return 4; /* out of 10 */
 }
 }
 class Universe
 {
 static void Main()
 {
 Worker peter = new Worker();
 Boss boss = new Boss();
 peter.completed = new WorkCompleted(boss.WorkCompleted);
 peter.DoWork();

 Console.WriteLine("Main: worker completed work");
 Console.ReadLine();
 }
 }

5

9/13/05 CS360 Windows Programming 25

Delegates Example

9/13/05 CS360 Windows Programming 26

Exceptions

public void SomeMethod(...)

{

File file = new File("Readme.txt");

...

file.Close();

}

What happens if the file
doesn’t exist?

What happens if an error occurs
in here?

9/13/05 CS360 Windows Programming 27

Exceptions: the general idea
try
{
 some code that might throw an exception
 more code
}
catch (most specific exception)
{
 handle the exception
}
catch (less specific exception)
{
 handle the exception
}
catch (any exception)
{
 handle the exception
}
finally
{
 do this no matter what
}
still more code

9/13/05 CS360 Windows Programming 28

Exceptions
using System.IO;
public void SomeMethod(...)
{
 File file = null;
 try
 {
 file = new File("Readme.txt");
 more code
 }
 catch (FileNotFoundException e)
 {
 Console.WriteLine("File " + e.FileName + " not found");
 }
 catch (Exception e)
 {
 Console.WriteLine(e);
 }
 finally
 {
 if (file != null)
 file.Close();
 }
}

9/13/05 CS360 Windows Programming 29

Exceptions

• In a catch block, you can:
o Rethrow the same exception, notifying code

higher in the call stack

o Throw a different exception, giving additional
information to code higher in the call stack

o Handle the exception and fall out the bottom of
the catch block

9/13/05 CS360 Windows Programming 30

Exceptions

• Remember that:
o Exceptions are not always "errors"

o Exceptions are not always infrequent

o Sometimes it's best not to catch an exception
where it occurs

o There is a performance hit for exceptions

6

9/13/05 CS360 Windows Programming 31

Summary

• Completed
o Exceptions 54-58

o Garbage Collection 38-42

o Delegates 34-35

