
1

9/8/05 CS360 Windows Programming 1

Interfaces, Enumerations, Boxing,
and Unboxing

9/8/05 CS360 Windows Programming 2

Last Week

• We
o Started looking at the different types in C#

o Introduced the concept of the stack and heap

o Looked at the components of classes

o Covered the difference between reference and
value types

9/8/05 CS360 Windows Programming 3

Interfaces

• Classes that have no fields and the
methods have no implementations

• The implementations appear in the classes
that inherit from the interface

• When a class inherits from an interface it
must implement all methods and properties

9/8/05 CS360 Windows Programming 4

Interface Example
interface INode
{
 string Text
 {

get;
set; }

 object Tag
 {

get;
set; }

int Height
 {

get;
set; }

int Width
 {

get;
set; }

 float CalculateArea();
}

9/8/05 CS360 Windows Programming 5

Interfaces Example

• Write a class (Node) that inherits from INode

• Class Node must contain the following fields
o m_text

o m_height

o m_width

• Write the code needed to instantiate your
Node class and test all properties and
methods

9/8/05 CS360 Windows Programming 6

Enumerations

• Enumerations define literals that are then used as constants for their
corresponding values

public enum DAYS

{

Monday,

Tuesday,

Wednesday,

Thursday,

Friday,

Saturday,

Sunday

}

2

9/8/05 CS360 Windows Programming 7

Enumerations Cont.

• By default, the values in an enumeration are
o 0 for the first item

o 1 larger for every subsequent item

9/8/05 CS360 Windows Programming 8

Enumerations Cont.
class EnumTest

{

 public enum DAYS

 { Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,
Sunday }

 static void Main(string[] args)

 {

 Array dayArray = Enum.GetValues(typeof(Class1.DAYS));

 foreach (DAYS day in dayArray)

 Console.WriteLine("Number {1} of EnumTest.DAYS is {0}",

 day, day.ToString("d"));

 }

}

9/8/05 CS360 Windows Programming 9

Enumerations Cont.

9/8/05 CS360 Windows Programming 10

Enumerations Cont.

public enum DAYS

{

Monday = 1,

Tuesday,

Wednesday,

Thursday,

Friday,

Saturday,

Sunday

}

9/8/05 CS360 Windows Programming 11

Delegates

• We will skip delegates for today

9/8/05 CS360 Windows Programming 12

Boxing and Unboxing

• Why do we have reference and value types?

• Why not just stick with reference types?

• Where are each of these created in
memory?

• What happens when we pass a value type
to a method that expects a reference type?

3

9/8/05 CS360 Windows Programming 13

Boxing and Unboxing

• Boxing
o Creates a copy of the value type on the

managed heap

• Unboxing
o Duplicates a reference type on the stack

9/8/05 CS360 Windows Programming 14

C# Default Values

• The following are automatically initialized to
their default values:
• Static variables
• Instance variables of class instances
• Array elements

• For value types, the default value is 0
• For reference types, the default value is null
• Note that local variables are not considered

to be initially assigned

9/8/05 CS360 Windows Programming 15

C# Built-in Classes

• String
• ArrayList
• Stack
• Queue
• Hashtable
• These are found in the namespace

• System.Collections

9/8/05 CS360 Windows Programming 16

Example
struct Point

{

public int x, y;

}

. . .

ArrayList list =

 new ArrayList();

Point p;

for (int i = 0; i < 2;

 i++)

{

 p.x = p.y = i;

 list.Add(p);

}

Stack Heap

list

x = 0
y = 0

p
x = 0
y = 0

9/8/05 CS360 Windows Programming 17

Example
struct Point

{

public int x, y;

}

. . .

ArrayList list =

 new ArrayList();

Point p;

for (int i = 0; i < 2;

 i++)

{

 p.x = p.y = i;

 list.Add(p);

}

Stack Heap

list

x = 1
y = 1

p
x = 0
y = 0

x = 1
y = 1

Boxing

9/8/05 CS360 Windows Programming 18

Boxing and Unboxing

• C# hides the boxing from us

• We don’t have to change the syntax of our
programs

• However, when unboxing, an explicit type
cast is needed

4

9/8/05 CS360 Windows Programming 19

Example
struct Point
{
public int x, y;
}
. . .
ArrayList list =
 new ArrayList();
Point p;
for (int i = 0; i < 2;
 i++)
{
 p.x = p.y = i;
 list.Add(p);
}
p = (Point) list[0];

Stack Heap

list

x = 0
y = 0

p
x = 0
y = 0

x = 1
y = 1

Unboxing

9/8/05 CS360 Windows Programming 20

Summary

• Completed p. 27 - 38

• Next time we will complete chapter 2

• We will talk about exception handling

