
1

9/6/05 CS360 Windows Programming 1

CS360

Windows Programming

9/6/05 CS360 Windows Programming 2

Last Week

• We
o Covered the principles behind web services

o Introduced the .NET framework

o Reviewed object-oriented programming

o Started learning about C#

9/6/05 CS360 Windows Programming 3

C# Statements and Expressions

• Very similar to C++, with some changes to
increase robustness
o No ‘->’ or ‘::’; all qualifications use ‘.’

o Local variables must be initialized before use

o if, while, do require bool condition

o goto can’t jump into blocks

o switch statement – no fall through (empty case
OK)

o case labels can be strings

9/6/05 CS360 Windows Programming 4

Types

• FCL is a library of types
o Classes – today

o Structs – today

o Interfaces – next time

o Enumerations – next time

o Delegates – next time

9/6/05 CS360 Windows Programming 5

Classes

• Classes contain
o Fields - data members in C++

o Methods - member functions in C++

o Properties - expose data using get and set

o Events - define notifications that class can hire

9/6/05 CS360 Windows Programming 6

Example
class Rectangle

{

 // Fields

 protected int width = 1;

 protected int height = 1;

 // Methods (constructors)

 public Rectangle () {}

 public Rectangle (int cx, int cy)

 {

 Width = cx;

 Height = cy;

 }

}

2

9/6/05 CS360 Windows Programming 7

Example (cont.)
 // Properties
 public int Width
 {
 get { return width; }
 set
 {
 if (value > 0)
 width = value;
 else
 throw new ArgumentOutOfRangeException (
 "Width must be 1 or higher");
 }
 }

9/6/05 CS360 Windows Programming 8

Example (cont.)
public int Height
 {
 get { return height; }
 set
 {
 if (value > 0)
 height = value;
 else
 throw new ArgumentOutOfRangeException (
 "Height must be 1 or higher");
 }
 }

 public int Area
 {
 get { return width * height; }
 }

9/6/05 CS360 Windows Programming 9

Example (cont.)

Rectangle rect = new Rectangle ();

Rectangle rect = new Rectangle (3, 4);

rect.Width *= 2;

int area = rect.Area;

9/6/05 CS360 Windows Programming 10

Structs

struct Point

{

 public int x;

 public int y;

 public Point (int x, int y)

 {

 this.x = x;

 this.y = y;

 }

}

9/6/05 CS360 Windows Programming 11

Reference and Value Types

• Classes are reference types

• Structs are value types

9/6/05 CS360 Windows Programming 12

Common Type System

Object

Value Reference

Built-in (primitive) data types
Examples: int, double, …
Size is specific
Allocated on Stack
Assignment copies value
Cannot derive from other types
User defined types: structs
Deallocated when defining block exits

Examples: Classes, Arrays,
Interfaces, Delegates
Allocated on managed heap
Assignment copies reference
Garbage collected

3

9/6/05 CS360 Windows Programming 13

Stack and Heap

• Memory is a collection of bytes

• Imagine each box as one byte long

• Each byte can hold a number between 0-
255. Why?

• Each byte has an address

9/6/05 CS360 Windows Programming 14

Stack and Heap

• Whenever a variable is created it is added
on to the stack

• Variables are added sequentially (i.e. l-r, t-b)

• No value for an empty byte

• No holes allowed in memory. Why?

• Stack pointer points
to end of used
memory

A B C

9/6/05 CS360 Windows Programming 15

Stack and Heap

• Problem: what do we do with dynamic
variables?

• Solution: use a heap

• Stack is used for
fixed size variables
only

• Stack pointer in
first four bytes of
stack

A B B B C

Stack pointer

9/6/05 CS360 Windows Programming 16

Stack and Heap

• Variables created on the heap are scattered
throughout the heap

• Heap contains holes

• Each variable has a header listing
o Size of variable

o Address of next
variable

stack

heap

9/6/05 CS360 Windows Programming 17

Example
Static void Main()
{
 Ref r1 = new Ref();
 Val v1 = new Val();
}

Class Ref
{
 public int x;
}

struct Val
{
 public int x;
}

Stack Heap

9/6/05 CS360 Windows Programming 18

Example
Static void Main()
{
 Ref r1 = new Ref();
 Val v1 = new Val();
}

Class Ref
{
 public int x;
}

struct Val
{
 public int x;
}

Stack Heap

r1

x = 0
v1

x = 0

4

9/6/05 CS360 Windows Programming 19

Example
Static void Main()
{
 Ref r1 = new Ref();
 Val v1 = new Val();
 r1.x = 5;
 v1.x = 5;
}

Class Ref
{
 public int x;
}

struct Val
{
 public int x;
}

Stack Heap

r1

x = 5
v1

x = 5

9/6/05 CS360 Windows Programming 20

Example
Static void Main()
{
 Ref r1 = new Ref();
 Val v1 = new Val();
 r1.x = 5;
 v1.x = 5;
 Ref r2 = r1;
 Val v2 = v1;
}

Class Ref
{
 public int x;
}

struct Val
{
 public int x;
}

Stack Heap

r1

x = 5
v1

x = 5

r2

x = 5
v2

9/6/05 CS360 Windows Programming 21

Summary

• Completed p. 27 - 38

• Next time we will complete chapter 2

