
CS360 Windows Programming

Assignment 1

Date assigned: Thursday, 15 September 2005
Date due: Tuesday, 27 September 2005
Points: 25 points (15 pts for part 1, 10 pts for part 2)

Your first assignment will get you ready to do serious work with C# and .NET. There are
two parts:

1. Write a simple C# console application that calculates mortgage payments.
2. Use Visual Studio to write a GUI version of the mortgage calculator from Part 1.

Before getting into the details, I want to outline some of the philosophy behind the
assignments in this course. What you will be doing is learning new technology, which is
a very common occurrence in today's computing environment.

Getting up to speed quickly is a skill that is well worth developing, and to do that you
need to be an active participant. You need to be energetic and inquisitive, and you
shouldn't expect everything to be spelled out in the ultimate detail. I’m here to help, but
your basic response to a situation you don't understand should be "how can I figure that
out?" rather than "who can give me the answer to that?"

Part 1: A simple mortgage calculator – console version

Goal: Write a simple C# application that calculates mortgage payments. This is going to
be a text based console application, and a run of your program might look like:

In this run, the user first computed the payments on a $100,000 mortgage for 30 years at
the interest rates of 5%, then determined what rate would reduce the payment to $500;
and then determined how many years the mortgage would have to run to have $500
payments at a rate of 5%.

You will write your code in C#. For this part of the assignment, any text editor will do,
even Notepad. You will compile your code using the command line compiler, and then
run it from the DOS prompt.

It's important that you realize that those are the only tools you need. Once you are into
fancier things, like visual design of a GUI, it's easy to get the idea that Visual Studio is
.NET. That is certainly not the case. You could go through the whole quarter using
Notepad and the command line compiler if you wanted to.

Having said all that, we would actually suggest that you go ahead and use Visual Studio
for this part, but just as a program editor. Open VS and create a new text file. Once you
type a line or two, save the file with the extension ".cs". Now VS will treat it as a C# file

and give you color-coding and other niceties that you wouldn’t get from Notepad. When
you are ready and have saved your file, you will compile it in a DOS command window
(discussed below).

I don’t want you to spend your time learning how to do financial calculations, so I am
providing you with a precompiled library: MortgageCalculatorFunctions.dll1. This
library defines a namespace called MortgageCalculatorFunctions that defines a single
class called CIFunctions. (CI stands for Compound Interest.) That class has four static
methods that compute mortgage amount, number of payment periods, rate, and payment.

Documentation for the library is provided to you as HTML. When you have unzipped the
distribution file (available in the CS360 folder on Turing), look in the folder
CodeCommentReport and click on Solution_MortgageCalculator.HTM. You then have
to drill down a little, but you will find documentation on the class as a whole and on each
method.

The compiler is called csc, and it is probably stored in a directory something like this:

C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322

You'll want to be sure that that directory is in your Path. I'll talk about how to do that and
how to use the compiler in class. Basically, you will invoke the compiler with a
command like this:

csc /r:MortgageCalculatorFunctions.dll MyCommandLineCalculator.cs

That assumes you have copied the dll into the same folder as your code. The result will
be a file called MyCommandLineCalculator.exe that you can run.

Your program should gracefully handle cases where the user provides a bad input (e.g.,
"xyz" for the mortgage amount) or where the financial code throws an exception.

Part 2: A simple mortgage calculator – GUI version

Your next step is to open Visual Studio and start a new project (from the File menu). This
should be a C# project, and you should use the template called Windows Application.
Choose your own name and location for the project.

Your goal is to write a GUI-based application that calculates mortgage payments. This
will give you experience in doing visual design, using Windows controls, and writing a
little more C#. Your final product should look something like this:

1 Thanks to Stanford University for this dll

Here are a few things to note:

• You will have to add a reference to MortgageCalculatorFunctions.dll. Do
this by rightclicking References in your project in the Solution Explorer panel and
choosing Add Reference. Click on the Projects tab, then navigate to the dll. Do
this early-on, and add the line using MortgageCalulatorFunctions; to the
beginning of your code. At that point IntelliSense will be able to help you with the
CIFunctions class.

• Fields are aligned and have labels.
• The radio buttons are used to indicate which value is being calculated.
• The calculated field should have a different background color from the other

fields, and this should be kept up to date as different radio buttons are pressed.
You can set the initial colors in design mode, and you should decide which field
to calculate by default

• When a radio button is pressed, the corresponding field should be blanked,
indicating that the Calculate button has not been pressed for this selection.

• The application window has a descriptive title.
• There is a File menu. The only item that needs to appear there is Exit. The code

behind the menu item is simply a call to Application.Exit().

Submission Instructions

• Submit a folder with both versions of your program to the CS360 drop folder by
9.25am on the day the assignment is due.

• Print out a hardcopy of all of your code and hand it in on the due date.

